Skip to main content

deGradFP: A System to Knockdown GFP-Tagged Proteins

  • Protocol
  • First Online:
Drosophila

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1478))

Abstract

Protein depletion by genetic means, in a very general sense including the use of RNA interference [1, 2] or CRISPR/Cas9-based methods, represents a central paradigm of modern biology to study protein functions in vivo. However, acting upstream the proteic level is a limiting factor if the turnover of the target protein is slow or the existing pool of the target protein is important (for instance, in insect embryos, as a consequence of a strong maternal contribution). In order to circumvent these problems, we developed deGradFP [3, 4]. deGradFP harnesses the ubiquitin-proteasome pathway to achieve direct depletion of GFP-tagged proteins. deGradFP is in essence a universal method because it relies on an evolutionarily conserved machinery for protein catabolism in eukaryotic cells; see refs. 5, 6 for review. deGradFP is particularly convenient in Drosophila melanogaster where it is implemented by a genetically encoded effector expressed under the control of the Gal4 system. deGradFP is a ready-to-use solution to perform knockdowns at the protein level if a fly line carrying a functional GFP-tagged version of the gene of interest is available. Many such lines have already been generated by the Drosophila community through different technologies allowing to make genomic rescue constructs or direct GFP knockins: protein-trap stock collections [7, 8] (http://cooley.medicine.yale.edu/flytrap/, http://www.flyprot.org/), P[acman] system [9], MiMIC lines [10, 11], and CRISPR/Cas9-driven homologous recombination.

Two essential controls of a protein knockdown experiment are easily achieved using deGradFP. First, the removal of the target protein can be assessed by monitoring the disappearance of the GFP tag by fluorescence microscopy in parallel to the documentation of the phenotype of the protein knockdown (see Note 1 ). Second, the potential nonspecific effects of deGradFP can be assessed in control fly lacking a GFP-tagged target protein. So far, no nonspecific effects of the deGradFP effector have been reported [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dietzl G, Doris CD, Schnorrer F et al (2007) A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448:151–156

    Article  CAS  PubMed  Google Scholar 

  2. Ni JQ, Zhou R, Czech B et al (2011) A genome-scale shRNA resource for transgenic RNAi in Drosophila. Nat Methods 8:405–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Caussinus E, Kanca O, Affolter M (2012) Fluorescent fusion protein knock-out mediated by anti-GFP nanobody. Nat Struct Mol Biol 19:117–121

    Article  CAS  Google Scholar 

  4. Caussinus E, Kanca O, Affolter M (2013) Protein knockouts in living eukaryotes using deGradFP and green fluorescent protein fusion targets. Curr Protoc Protein Sci 73:Unit 30.2

    Google Scholar 

  5. Ciechanover A (1998) The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J 17:7151–7160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Varshavsky A (2012) The ubiquitin system, an immense realm. Annu Rev Biochem 81:167–176

    Article  CAS  PubMed  Google Scholar 

  7. Morin X, Daneman R, Zavortink M et al (2001) A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in Drosophila. Proc Natl Acad Sci U S A 98:15050–15055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lowe N, Rees JS, Roote J et al (2014) Analysis of the expression patterns, subcellular localisations and interaction partners of drosophila proteins using a pigp protein trap library. Development 141:3994–4005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Venken KJT, Carlson JW, Schulze KL et al (2009) Versatile P[acman] bac libraries for transgenesis studies in Drosophila melanogaster. Nat Methods 6:431–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nagarkar-Jaiswal S, Lee PT, Campbell ME et al (2015) A library of Mimics allows tagging of genes and reversible, spatial and temporal knockdown of proteins in Drosophila. Elife. doi:10.7554/eLife.05338

    Google Scholar 

  11. Nagarkar-Jaiswal S, DeLuca SZ, Lee PT et al (2015) A genetic toolkit for tagging intronic mimic containing genes. Elife. doi:10.7554/eLife.08469

    Google Scholar 

  12. Ciechanover A, Ben-Saadon R (2004) N-terminal ubiquitination: more protein substrates join in. Trends Cell Biol 14:103–106

    Article  CAS  PubMed  Google Scholar 

  13. Jiang J, Struhl G (1998) Regulation of the hedgehog and wingless signalling pathways by the F-box/WD40-repeat protein Slimb. Nature 391:493–496

    Article  CAS  PubMed  Google Scholar 

  14. Saerens D, Pellis M, Loris R et al (2005) Identification of a universal VHH framework to graft non-canonical antigen-binding loops of camel single-domain antibodies. J Mol Biol 352:597–607

    Article  CAS  PubMed  Google Scholar 

  15. Rothbauer U, Zolghadr K, Tillib S et al (2006) Targeting and tracing antigens in live cells with fluorescent nanobodies. Nat Methods 3:887–889

    Article  CAS  PubMed  Google Scholar 

  16. Tabata T, Eaton S, Kornberg TB (1992) The Drosophila hedgehog gene is expressed specifically in posterior compartment cells and is a target of engrailed regulation. Genes Dev 6:2635–2645

    Article  CAS  PubMed  Google Scholar 

  17. Le T, Liang Z, Patel H et al (2006) A new family of Drosophila balancer chromosomes with a w-Dfd-GMR yellow fluorescent protein marker. Genetics 174:2255–2257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pina C, Pignoni F (2012) Tubby-RFP balancers for developmental analysis: FM7c 2xTb-RFP, Cyo 2xTb-RFP, and TM3 2xTb-RFP. Genesis 50:119–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Matsumoto K, Toh-e A, Oshima Y (1978) Genetic control of galactokinase synthesis in Saccharomyces cerevisiae: evidence for constitutive expression of the positive regulatory gene gal4. J Bacteriol 134:446–457

    CAS  PubMed  PubMed Central  Google Scholar 

  20. McGuire SE, Le PT, Osborn AJ et al (2003) Spatiotemporal rescue of memory dysfunction in Drosophila. Science 302:1765–1768

    Article  CAS  PubMed  Google Scholar 

  21. Tilmann B, Dominique F, Stefan L (2014) The transmembrane protein Macroglobulin complement-related is essential for septate junction formation and epithelial barrier function in Drosophila. Development 141:899–908

    Article  Google Scholar 

  22. Royou A, Field C, Sisson JC et al (2004) Reassessing the role and dynamics of nonmuscle myosin II during furrow formation in early Drosophila embryos. Mol Biol Cell 15:838–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zecca M, Struhl G (2007) Recruitment of cells into the Drosophila wing primordium by a feed-forward circuit of vestigial autoregulation. Development 134:3001–3010

    Article  CAS  PubMed  Google Scholar 

  24. Bopp D, Bell LR, Cline TW et al (1991) Developmental distribution of female-specific sex-lethal proteins in Drosophila melanogaster. Genes Dev 5:403–415

    Article  CAS  PubMed  Google Scholar 

  25. Urban E, Nagarkar-Jaiswal S, Lehner CF et al (2014) The cohesin subunit Rad21 is required for synaptonemal complex maintenance, but not sister chromatid cohesion, during Drosophila female meiosis. PLOS Genetics 10:e1004540

    Google Scholar 

  26. Rubliaychaudhuri N, Dubruille R, Orsi GA et al (2012) Transgenerational propagation and quantitative maintenance of paternal centromeres depends on Cid/Cenp-A presence in Drosophila sperm. PLoS Biol 10:e1001434

    Article  Google Scholar 

  27. Harder B, Schomburg A, Pflanz R et al (2008) Tev protease-mediated cleavage in Drosophila as a tool to analyze protein functions in living organisms. Biotechniques 44:765–772

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Bloomington Drosophila Stock Center (Indiana University, Bloomington) for providing fly stocks, and Addgene for providing plasmids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Affolter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Caussinus, E., Affolter, M. (2016). deGradFP: A System to Knockdown GFP-Tagged Proteins. In: Dahmann, C. (eds) Drosophila. Methods in Molecular Biology, vol 1478. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6371-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6371-3_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6369-0

  • Online ISBN: 978-1-4939-6371-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics