Skip to main content

Microencapsulated Cells for Cancer Therapy

  • Protocol
  • First Online:
Cell Microencapsulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1479))

Abstract

The microencapsulation of different types of cells that are able to produce therapeutic factors is being investigated for the treatment of several human diseases. Most efforts are focused on chronic and degenerative diseases as this strategy could become an alternative to some commonly used parenteral treatments that need to be repeatedly administered. But, this approach has also been investigated in the field of oncology with the aim of providing immunomodulatory antibodies that are able to enhance the patient’s inherent immune response against the tumor. These kind of treatments would provide the patient with the therapeutic drug produced in situ, de novo, and in a sustained way, making the therapy more comfortable.

Although different devices are nowadays available to produce cell-enclosing alginate-microcapsules, here, we describe the most important steps and advices in order to fabricate alginate-poly-l-lysine-alginate microcapsules containing hybridoma cells for cancer management using an electrostatic bead generator, and how to evaluate the viability of those cells over the time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Orive G, Santos E, Pedraz JL, Hernandez RM (2014) Application of cell encapsulation for controlled delivery of biological therapeutics. Adv Drug Deliv Rev 67–68:3–14

    Article  Google Scholar 

  2. de Vos P, Lazarjani HA, Poncelet D, Faas MM (2014) Polymers in cell encapsulation from an enveloped cell perspective. Adv Drug Deliv Rev 67–68:15–34

    Article  Google Scholar 

  3. de Vos P, Faas MM, Strand B, Calafiore R (2006) Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomaterials 27(32):5603–5617

    Article  Google Scholar 

  4. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37(1):106–126

    Article  CAS  Google Scholar 

  5. Gasperini L, Mano JF, Reis RL (2014) Natural polymers for the microencapsulation of cells. J R Soc Interface 11(100):20140817

    Article  Google Scholar 

  6. Orive G, Ponce S, Hernandez RM, Gascon AR, Igartua M, Pedraz JL (2002) Biocompatibility of microcapsules for cell immobilization elaborated with different type of alginates. Biomaterials 23(18):3825–3831

    Article  CAS  Google Scholar 

  7. De Castro M, Orive G, Hernandez RM, Gascon AR, Pedraz JL (2005) Comparative study of microcapsules elaborated with three polycations (PLL, PDL, PLO) for cell immobilization. J Microencapsul 22(3):303–315

    Article  Google Scholar 

  8. Acarregui A, Murua A, Pedraz JL, Orive G, Hernandez RM (2012) A perspective on bioactive cell microencapsulation. BioDrugs 26(5):283–301

    Article  CAS  Google Scholar 

  9. Calafiore R, Basta G (2014) Clinical application of microencapsulated islets: actual prospectives on progress and challenges. Adv Drug Deliv Rev 67–68:84–92

    Article  Google Scholar 

  10. Basta G, Montanucci P, Luca G, Boselli C, Noya G, Barbaro B et al (2011) Long-term metabolic and immunological follow-up of nonimmunosuppressed patients with type 1 diabetes treated with microencapsulated islet allografts: four cases. Diabetes Care 34(11):2406–2409

    Article  CAS  Google Scholar 

  11. Ferreira D, Westman E, Eyjolfsdottir H, Almqvist P, Lind G, Linderoth B et al (2015) Brain changes in Alzheimer’s disease patients with implanted encapsulated cells releasing nerve growth factor. J Alzheimers Dis 43(3):1059–1072

    CAS  Google Scholar 

  12. Bachoud-Levi AC, Deglon N, Nguyen JP, Bloch J, Bourdet C, Winkel L et al (2000) Neuroprotective gene therapy for Huntington’s disease using a polymer encapsulated BHK cell line engineered to secrete human CNTF. Hum Gene Ther 11(12):1723–1729

    Article  CAS  Google Scholar 

  13. Zurn AD, Henry H, Schluep M, Aubert V, Winkel L, Eilers B et al (2000) Evaluation of an intrathecal immune response in amyotrophic lateral sclerosis patients implanted with encapsulated genetically engineered xenogeneic cells. Cell Transplant 9(4):471–484

    CAS  Google Scholar 

  14. Emerich DF, Orive G, Thanos C, Tornoe J, Wahlberg LU (2014) Encapsulated cell therapy for neurodegenerative diseases: from promise to product. Adv Drug Deliv Rev 67–68:131–141

    Article  Google Scholar 

  15. Saenz Del Burgo L, Compte M, Aceves M, Hernandez RM, Sanz L, Alvarez-Vallina L et al (2015) Microencapsulation of therapeutic bispecific antibodies producing cells: immunotherapeutic organoids for cancer management. J Drug Target 23(2):170–179

    Article  CAS  Google Scholar 

  16. Beck A, Wurch T, Bailly C, Corvaia N (2010) Strategies and challenges for the next generation of therapeutic antibodies. Nat Rev Immunol 10(5):345–352

    Article  CAS  Google Scholar 

  17. Melero I, Hervas-Stubbs S, Glennie M, Pardoll DM, Chen L (2007) Immunostimulatory monoclonal antibodies for cancer therapy. Nat Rev Cancer 7(2):95–106

    Article  CAS  Google Scholar 

  18. Compte M, Blanco B, Serrano F, Cuesta AM, Sanz L, Bernad A et al (2007) Inhibition of tumor growth in vivo by in situ secretion of bispecific anti-CEA x anti-CD3 diabodies from lentivirally transduced human lymphocytes. Cancer Gene Ther 14(4):380–388

    Article  CAS  Google Scholar 

  19. Kontermann R (2012) Dual targeting strategies with bispecific antibodies. MAbs 4(2):182–197

    Article  Google Scholar 

  20. Dubrot J, Portero A, Orive G, Hernandez RM, Palazon A, Rouzaut A et al (2010) Delivery of immunostimulatory monoclonal antibodies by encapsulated hybridoma cells. Cancer Immunol Immunother 59(11):1621–1631

    Article  CAS  Google Scholar 

  21. Murillo O, Arina A, Tirapu I, Alfaro C, Mazzolini G, Palencia B et al (2003) Potentiation of therapeutic immune responses against malignancies with monoclonal antibodies. Clin Cancer Res 9(15):5454–5464

    CAS  Google Scholar 

  22. Korman AJ, Peggs KS, Allison JP (2006) Checkpoint blockade in cancer immunotherapy. Adv Immunol 90:297–339

    Article  CAS  Google Scholar 

  23. Vonderheide RH, Flaherty KT, Khalil M, Stumacher MS, Bajor DL, Hutnick NA et al (2007) Clinical activity and immune modulation in cancer patients treated with CP-870,893, a novel CD40 agonist monoclonal antibody. J Clin Oncol 25(7):876–883

    Article  CAS  Google Scholar 

  24. Suntharalingam G, Perry MR, Ward S, Brett SJ, Castello-Cortes A, Brunner MD et al (2006) Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med 355(10):1018–1028

    Article  CAS  Google Scholar 

  25. Uno T, Takeda K, Kojima Y, Yoshizawa H, Akiba H, Mittler RS et al (2006) Eradication of established tumors in mice by a combination antibody-based therapy. Nat Med 12(6):693–698

    Article  CAS  Google Scholar 

  26. Manojlovic V, Djonlagic J, Obradovic B, Nedovic V, Bugarski B (2006) Immobilization of cells by electrostatic droplet generation: a model system for potential application in medicine. Int J Nanomedicine 1(2):163–171

    Article  CAS  Google Scholar 

  27. Bugarski B, Li QL, Goosen MFA, Poncelet D, Neufeld RJ et al (1994) Electrostatic droplet generation – mechanism of polymer droplet formation. Aiche J 40(6):1026–1031

    Article  Google Scholar 

  28. Poncelet D, Babak VG, Neufeld RJ, Goosen MFA, Burgarski B (1999) Theory of electrostatic dispersion of polymer solutions in the production of microgel beads containing biocatalyst. Adv Colloid Interf Sci 79(2-3):213–228

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Pedraz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Saenz del Burgo, L., Ciriza, J., Hernández, R.M., Orive, G., Pedraz, J.L. (2017). Microencapsulated Cells for Cancer Therapy. In: Opara, E. (eds) Cell Microencapsulation. Methods in Molecular Biology, vol 1479. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6364-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6364-5_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6362-1

  • Online ISBN: 978-1-4939-6364-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics