Skip to main content

Induction and Purification of C. difficile Phage Tail-Like Particles

  • Protocol
  • First Online:
Clostridium difficile

Abstract

Due to the inherent limitations of conventional antibiotics for the treatment of C. difficile infection (CDI), there is a growing interest in the development of alternative treatment strategies. Both bacteriophages and R-type bacteriocins, also known as phage tail-like particles (PTLPs), show promise as potential antibacterial alternatives for treating CDI. Similar to bacteriophages, but lacking a viral capsid and genome, PTLPs remain capable of killing target bacteria. Here we describe our experience in the induction and purification of C. difficile PTLPs. These methods have been optimized to allow production of concentrated, non-contractile, and non-aggregated samples for both sensitivity testing and structural electron microscopy studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McFarland LV, Elmer GW, Surawicz CM (2002) Breaking the cycle: treatment strategies for 163 cases of recurrent Clostridium difficile disease. Am J Gastroenterol 97:1769–1775

    Article  CAS  PubMed  Google Scholar 

  2. Surawicz CM (2013) Infection: treating recurrent C. difficile infection-the challenge continues. Nat Rev Gastroenterol Hepatol 10(1):10–11

    Article  PubMed  Google Scholar 

  3. Hargreaves KR, Clokie MR (2014) Clostridium difficile phages: still difficult? Front Microbiol 28(5):184

    Google Scholar 

  4. Nakonieczna A, Cooper CJ, Gryko R. (2015) Bacteriophages and bacteriophage derived endolysins as potential therapeutics to combat gram positive spore forming bacteria. J Appl Microbiol. June 24 [Epub]

    Google Scholar 

  5. Michel-Briand Y, Baysse C (2002) The pyocins of Pseudomonas aeruginosa. Biochimie 84:449–510

    Article  Google Scholar 

  6. Fortier LC, Moineau S (2007) Morphological and genetic diversity of temperate phages in Clostridium difficile. Appl Environ Microbiol 73:7358–7366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nale JY, Shan J, Hickenbotham PT, Fawley WN, Wilcox MH, Clokie MR (2012) Diverse temperate bacteriophage carriage in Clostridium difficile 027 strains. PLoS One 7:e37263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gebhart D, Williams SR, Bishop-Lilly KA, Govoni GR, Willner KM, Butani A et al (2012) Novel high-molecular-weight, R-type bacteriocins of Clostridium difficile. J Bacteriol 194:6240–6247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sangster W, Hegarty JP, Stewart DB Sr (2015) Phage tail-like particles kill Clostridium difficile and represent an alternative to conventional antibiotics. Surgery 157(1):96–103

    Article  PubMed  Google Scholar 

  10. Gebhart D, Lok S, Clare S, Tomas M, Stares M, Scholl D, Donskey CJ, Lawley TD, Govoni GR (2015) A modified R-type bacteriocin specifically targeting Clostridium difficile prevents colonization of mice without affecting gut microbiota diversity. MBio 6(2):e02368-14

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ge P, Scholl D, Leiman PG, Yu X, Miller JF, Zhou ZH (2015) Atomic structures of a bactericidal contractile nanotube in its pre- and post-contraction states. Nat Struct Mol Biol 22(5):377–382

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Goh S, Riley TV, Chang BJ (2005) Isolation and characterization of temperate bacteriophages of Clostridium difficile. Appl Environ Microbiol 71(2):1079–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sekulovic O, Garneau JR, Néron A, Fortier LC (2014) Characterization of temperate phages infecting Clostridium difficile isolates of human and animal origins. Appl Environ Microbiol 80(8):2555–2556

    Article  PubMed  PubMed Central  Google Scholar 

  14. Meessen-Pinard M, Sekulovic O, Fortier LC (2012) Evidence of in vivo prophage induction during Clostridium difficile infection. Appl Environ Microbiol 78(21):7662–7670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to John P. Hegarty Ph.D. or David B. Stewart Sr. M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hegarty, J.P., Sangster, W., Ashley, R.E., Myers, R., Hafenstein, S., Stewart, D.B. (2016). Induction and Purification of C. difficile Phage Tail-Like Particles. In: Roberts, A., Mullany, P. (eds) Clostridium difficile. Methods in Molecular Biology, vol 1476. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6361-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6361-4_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6359-1

  • Online ISBN: 978-1-4939-6361-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics