Skip to main content

The Use of Anti-inflammatory Drugs in Epilepsy

  • Protocol
  • First Online:
Antiepileptic Drug Discovery

Abstract

Epilepsy is a brain disorder associated with neuroinflammation. Furthermore, it is known that important elements of the inflammatory process increase the susceptibility to epileptic activity. Therefore, the search of pharmacological strategies focused on decreasing both neuroinflammation and neuronal excitability associated with epilepsy is important. This chapter is a review of several drugs that may be used for this purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bañuelos-Cabrera I, Valle-Dorado MG, Aldana BI et al (2014) Role of histaminergic system in blood-brain barrier dysfunction associated with neurological disorders. Arch Med Res 45(8):677–686

    Article  PubMed  Google Scholar 

  2. Legido A, Katsetos CD (2014) Experimental studies in epilepsy; immunologic and inflammatory mechanisms. Semin Pediatr Neurol 21(3):197–206

    Article  PubMed  Google Scholar 

  3. Vezzani A, Granata T (2005) Brain inflammation in epilepsy: experimental and clinical evidence. Epilepsia 46:1724–1743

    Article  CAS  PubMed  Google Scholar 

  4. Vezzani A, French J, Bartfai T et al (2011) The role of inflammation in epilepsy. Nat Rev Neurol 7:31–40

    Article  CAS  PubMed  Google Scholar 

  5. Janigro D, Iffland PH II, Marchi N et al (2013) A role for inflammation in status epilepticus is revealed by a review of current therapeutic approaches. Epilepsia 54(Suppl 6):30–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Eid T, Thomas MJ, Spencer DD et al (2004) Loss of glutamine synthetase in the human epileptogenic hippocampus: possible mechanism for raised extracellular glutamate in mesial temporal lobe epilepsy. Lancet 363:28–37

    Article  CAS  PubMed  Google Scholar 

  7. Czeh M, Gressens P, Kaindl AM (2011) The yin and yang of microglia. Dev Neurosci 33(3–4):199–209

    Article  CAS  PubMed  Google Scholar 

  8. Brown GC, Vilalta A (2015) How microglia kill neurons. Brain Res 1628:288–297

    Article  CAS  PubMed  Google Scholar 

  9. Maroso M, Balosso S, Ravizza T et al (2011) Interleukin-1β biosynthesis inhibition reduces acute seizures and drug resistant chronic epileptic activity in mice. Neurotherapeutics 8:304–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Anderson CM, Swanson RA (2000) Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia 32:1–14

    Article  CAS  PubMed  Google Scholar 

  11. Oby E, Janigro D (2006) The blood-brain barrier and epilepsy. Epilepsia 47(11):1761–1774

    Article  CAS  PubMed  Google Scholar 

  12. Ivens S, Kaufer D, Flores LP et al (2007) TGF-beta receptor-mediated albumin uptake into astrocytes is involved in neocortical epileptogenesis. Brain 130:535–547

    Article  PubMed  Google Scholar 

  13. Bedner P, Dupper A, Hüttmann K et al (2015) Astrocyte uncoupling as a cause of human temporal lobe epilepsy. Brain 138:1208–1222

    Article  PubMed  Google Scholar 

  14. Khalil M, Ronda J, Weintraub M et al (2007) Brain mast cell relationship to neurovasculature during development. Brain Res 1171:18–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhuang X, Silverman AJ, Silver R (1996) Brain mast cell degranulation regulates blood-brain barrier. J Neurobiol 31(4):393–403

    Article  CAS  PubMed  Google Scholar 

  16. Cocchiara R, Albeggiani G, Lampiasi N (1999) Histamine and tumor necrosis factor-alpha production from purified rat brain mast cells mediated by substance P. Neuroreport 10(3):575–578

    Article  CAS  PubMed  Google Scholar 

  17. Jin Y, Silverman AJ, Vannucci SJ (2009) Mast cells are early responders after hypoxia-ischemia in immature rat brain. Stroke 40(9):3107–3112

    Article  CAS  PubMed  Google Scholar 

  18. Bleck TP (2009) Hypothermia, hyperthermia, and other systemic factors in status epilepticus. Epilepsia 50(Suppl 12):10

    Article  PubMed  Google Scholar 

  19. Mattila OS, Strbian D, Saksi J et al (2011) Cerebral mast cells mediate blood-brain barrier disruption in acute experimental ischemic stroke through perivascular gelatinase activation. Stroke 42(12):3600–3605

    Article  CAS  PubMed  Google Scholar 

  20. Kempuraj D, Asadi S, Zhang B et al (2010) Mercury induces inflammatory mediator release from human mast cells. J Neuroinflammation 7:20

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kim JE, Ryu HJ, Kang TC (2013) Status epilepticus induces vasogenic edema via tumor necrosis factor-α/endothelin-1-mediated two different pathways. PLoS One 8(9):74458

    Article  Google Scholar 

  22. Meng H, Tonnesen MG, Marchese MJ et al (1995) Mast cells are potent regulators of endothelial cell adhesion molecule ICAM-1 and VCAM-1 expression. J Cell Physiol 165(1):40–53

    Article  CAS  PubMed  Google Scholar 

  23. Dhôte F, Peinnequin A, Carpentier P et al (2007) Prolonged inflammatory gene response following soman-induced seizures in mice. Toxicology 238(2–3):166–176

    Article  PubMed  Google Scholar 

  24. Valle-Dorado MG, Santana-Gómez CE, Orozco-Suárez SA et al (2015) The mast cell stabilizer sodium cromoglycate reduces histamine release and status epilepticus-induced neuronal damage in the rat hippocampus. Neuropharmacology 92:49–55

    Article  CAS  PubMed  Google Scholar 

  25. Kaufmann WE, Andreasson KI, Isakson PC et al (1997) Cyclooxygenases and the central nervous system. Prostaglandins 54(3):601–624

    Article  CAS  PubMed  Google Scholar 

  26. Desjardins P, Sauvageau A, Bouthillier A et al (2003) Induction of astrocytic cyclooxygenase-2 in epileptic patients with hippocampal sclerosis. Neurochem Int 42:299–303

    Article  CAS  PubMed  Google Scholar 

  27. Okada K, Yuhi T, Tsuji S et al (2001) Cyclooxygenase-2 expression in the hippocampus of genetically epilepsy susceptible EI mice was increased after seizure. Brain Res 894:332–335

    Article  CAS  PubMed  Google Scholar 

  28. Tanaka S, Nakamura T, Sumitani K et al (2009) Stage- and region-specific cyclooxygenase expression and effects of a selective COX-1 inhibitor in the mouse amygdala kindling model. Neurosci Res 65:79–87

    Article  CAS  PubMed  Google Scholar 

  29. Zhang H, Sun R, Lei GF et al (2008) Cyclooxygenase-2 inhibitor inhibits hippocampal synaptic reorganization in pilocarpine-induced status epilepticus rats. J Zhejiang Univ Sci B 9(11):903–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ma L, Cui XL, Wang Y et al (2012) Aspirin attenuates spontaneous recurrent seizures and inhibits hippocampal neuronal loss, mossy fiber sprouting and aberrant neurogenesis following pilocarpine-induced status epilepticus in rats. Brain Res 1469:103–113

    Article  CAS  PubMed  Google Scholar 

  31. Mrsić J, Zupan G, Eraković V et al (1997) The influence of nimodipine and MK-801 on the brain free arachidonic acid level and the learning ability in hypoxia-exposed rats. Prog Neuropsychopharmacol Biol Psychiatry 21(2):345–358

    Article  PubMed  Google Scholar 

  32. Bohr VA, Stevnsner T, de Souza-Pinto NC (2002) Mitochondrial DNA repair of oxidative damage in mammalian cells. Gene 286(1):127–134

    Article  CAS  PubMed  Google Scholar 

  33. Gluck MR, Jayatilleke E, Shaw S et al (2000) CNS oxidative stress associated with the kainic acid rodent model of experimental epilepsy. Epilepsy Res 39(1):63–71

    Article  CAS  PubMed  Google Scholar 

  34. Tejada S, Sureda A, Roca C et al (2007) Antioxidant response and oxidative damage in brain cortex after high dose of pilocarpine. Brain Res Bull 71(4):372–375

    Article  CAS  PubMed  Google Scholar 

  35. Jarret SG, Liang LP, Hellier JL et al (2008) Mitochondrial DNA damage and impaired base excision repair during epileptogenesis. Neurobiol Dis 30(1):130–138

    Article  Google Scholar 

  36. Betti M, Minelli A, Ambrogini P et al (2011) Dietary supplementation with α-tocopherol reduces neuroinflammation and neuronal degeneration in the rat brain after kainic acid-induced status epilepticus. Free Radic Res 45:1136–1142

    Article  CAS  PubMed  Google Scholar 

  37. Mao X, Cao Y, Li X et al (2014) Baicalein ameliorates cognitive deficits in epilepsy-like tremor rat. Neurol Sci 35:1261–1268

    Article  PubMed  Google Scholar 

  38. Vezzani A, Lang B, Aronica E (2015) Immunity and inflammation in epilepsy. Cold Spring Harb Perspect Med 6(2):pii: a022699

    Article  Google Scholar 

  39. Ravizza T, Balosso S, Vezzani A (2011) Inflammation and prevention of epileptogenesis. Neurosci Lett 497:223–230

    Article  CAS  PubMed  Google Scholar 

  40. Ciceri P, Zhang Y, Shaffer AF et al (2002) Pharmacology of celecoxib in rat brain after kainate administration. J Pharmacol Exp Ther 302(3):846–852

    Article  CAS  PubMed  Google Scholar 

  41. Volk HA, Löscher W (2005) Multidrug resistance in epilepsy: rats with drug-resistant seizures exhibit enhanced brain expression of P-glycoprotein compared with rats with drug-responsive seizures. Brain 128(Pt 6):1358–1368

    Article  PubMed  Google Scholar 

  42. Zibell G, Unkrüer B, Pekcec A et al (2009) Prevention of seizure-induced up-regulation of endothelial P-glycoprotein by COX-2 inhibition. Neuropharmacology 56:849–855

    Article  CAS  PubMed  Google Scholar 

  43. Polascheck N, Bankstahl M, Löscher W (2010) The COX-2 inhibitor parecoxib is neuroprotective but not antiepileptogenic in the pilocarpine model of temporal lobe epilepsy. Exp Neurol 224:219–233

    Article  CAS  PubMed  Google Scholar 

  44. Jeong KH, Kim JY, Choi YS et al (2013) Influence of aspirin on pilocarpine-induced epilepsy in mice. Korean J Physiol Pharmacol 17(1):15–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Iknomidou-Turski C, Cavalheiro EA, Turski L et al (1988) Differential effects of non-steroidal anti-inflammatory drugs on seizures produced by pilocarpine in rats. Brain Res 462(2):275–285

    Article  Google Scholar 

  46. Viera MJ, Perosa SR, Argaãaraz GA et al (2014) Indomethacin can downregulate the levels of inflammatory mediators in the hippocampus of rats submitted to pilocarpine-induced status epilepticus. Clinics (Sao Paulo) 69(9):621–626

    Article  Google Scholar 

  47. Araki T, Otsubo H, Makino Y et al (2006) Efficacy of dexamathasone on cerebral swelling and seizures during subdural grid EEG recording in children. Epilepsia 47(1):176–180

    Article  CAS  PubMed  Google Scholar 

  48. Che W, Parmentier J, Seidel P et al (2014) Corticosteroids inhibit sphingosine 1-phosphate-induced interleukin-6 secretion from human airway smooth muscle via mitogen-activated protein kinase phosphatase 1-mediated repression of mitogen and stress-activated protein kinase 1. Am J Respir Cell Mol Biol 50(2):358–368

    PubMed  Google Scholar 

  49. García HH, Gonzales I, Lescano AG, Cysticercosis Working Group in Peru et al (2014) Enhanced steroid dosing reduces seizures during antiparasitic treatment for cysticercosis and early after. Epilepsia 55(9):1452–1459

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yilmaz T, Akça M, Turan Y et al (2014) Efficacy of dexamethasone on penicillin-induced epileptiform activity in rats: an electrophysiological study. Brain Res 1554:67–72

    Article  CAS  PubMed  Google Scholar 

  51. Duffy BA, Chun KP, Ma D et al (2014) Dexamethasone exacerbates cerebral edema and brain injury following lithium-pilocarpine induced status epilepticus. Neurobiol Dis 63:229–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Al-Shorbagy MY, El Sayeh BM, Abdallah DM (2012) Diverse effects of variant doses of dexamethasone in lithium-pilocarpine induced seizures in rats. Can J Physiol Pharmacol 90(1):13–21

    Article  CAS  PubMed  Google Scholar 

  53. Ambrogini P, Minelli A, Galati C et al (2014) Post-seizure α-tocopherol treatment decreases neuroinflammation and neuronal degeneration induced by status epilepticus in rat hippocampus. Mol Neurobiol 50(1):246–256

    Article  CAS  PubMed  Google Scholar 

  54. Sawicka-Glazer E, Czuczwar SJ (2014) Vitamin C: a new auxiliary treatment of epilepsy? Pharmacol Rep 66(4):529–533

    Article  CAS  PubMed  Google Scholar 

  55. Sutter R, Rüegg S, Tschudin-Sutter S (2015) Seizures as adverse events of antibiotic drugs: a systematic review. Neurology 85(15):1332–1341

    Article  CAS  PubMed  Google Scholar 

  56. Sander JW, Perucca E (2003) Epilepsy and comorbidity: infections and antimicrobials usage in relation to epilepsy management. Acta Neurol Scand Suppl 180:16–22. doi:10.1034/j.1600-0404.108.s180.3.x

    Article  CAS  PubMed  Google Scholar 

  57. Wang DD, Englot DJ, Garcia PA et al (2012) Minocycline- and tetracycline-class antibiotics are protective against partial seizures in vivo. Epilepsy Behav 24:314–318. doi:10.1016/j.yebeh.2012.03.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kielian T, Esen N, Liu S et al (2007) Minocycline modulates neuroinflammation independently of its antimicrobial activity in Staphylococcus aureus-induced brain abscess. Am J Pathol 171:1199–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yong VW, Wells J, Giuliani F et al (2004) The promise of minocycline in neurology. Lancet Neurol 3:744–751

    Article  PubMed  Google Scholar 

  60. Wang N, Mi X, Gao B et al (2015) Minocycline inhibits brain inflammation and attenuates spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Neuroscience 287:144–156. doi:10.1016/j.neuroscience.2014.12.021

    Article  CAS  PubMed  Google Scholar 

  61. Vezzani A, Viviani B (2015) Neuromodulatory properties of inflammatory cytokines and their impact on neuronal excitability. Neuropharmacology 96(Pt A):70–82

    Article  CAS  PubMed  Google Scholar 

  62. Nickel W, Rabouille C (2009) Mechanisms of regulated unconventional protein secretion. Nat Rev Mol Cell Biol 10:148–155

    Article  CAS  PubMed  Google Scholar 

  63. Ravizza T, Noé F, Zardoni D et al (2008) Interleukin converting enzyme inhibition impairs kindling epileptogenesis in rats by blocking astrocytic IL-1β production. Neurobiol Dis 31:327–333

    Article  CAS  PubMed  Google Scholar 

  64. Noe FM, Polascheck N, Frigerio F et al (2013) Pharmacological blockade of IL-1β/IL-1 receptor type 1 axis during epileptogenesis provides neuroprotection in two rat models of temporal lobe epilepsy. Neurobiol Dis 59:183–193

    Article  CAS  PubMed  Google Scholar 

  65. Napolioni V, Curatolo P (2008) Genetics and molecular biology of tuberous sclerosis complex. Curr Genomics 9(7):475–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Curatolo P (2015) Mechanistic target of rapamycin (mTOR) in tuberous sclerosis complex-associated epilepsy. Pediatr Neurol 52(3):281–289

    Article  PubMed  Google Scholar 

  67. Russo E, Andreozzi F, Iuliano R et al (2014) Early molecular and behavioral response to lipopolysaccharide in the WAG/Rij rat model of absence epilepsy and depressive-like behavior, involves interplay between AMPK, AKT/mTOR pathways and neuroinflammatory cytokine release. Brain Behav Immun 42:157–168

    Article  CAS  PubMed  Google Scholar 

  68. Curatolo P, Bjørnvold M, Dill PE et al (2016) The role of mTOR inhibitors in the treatment of patients with tuberous sclerosis complex: evidence-based and expert opinions. Drugs 76:551–565. doi:10.1007/s40265-016-0552-9

    Article  CAS  PubMed  Google Scholar 

  69. Drion CM, Borm LE, Kooijman L et al (2016) Effects of rapamycin and curcumin treatment on the development of epilepsy after electrically induced status epilepticus in rats. Epilepsia 57:688–697. doi:10.1111/epi.13345

    Article  CAS  PubMed  Google Scholar 

  70. Lukawski K, Gryta P, Łuszczki J et al (2016) Exploring the latest avenues for antiepileptic drug discovery and development. Expert Opin Drug Discov 11:369–382

    Article  PubMed  Google Scholar 

  71. Nautiyal KM, Dailey CA, Jahn JL et al (2012) Serotonin of mast cell origin contributes to hippocampal function. Eur J Neurosci 36(3):2347–2359

    Article  PubMed  PubMed Central  Google Scholar 

  72. Howell JB, Altounyan RE (1967) A double-blind trial of disodium cromoglycate in the treatment of allergic bronchial asthma. Lancet 2(7515):539–542

    Article  CAS  PubMed  Google Scholar 

  73. Kusner EJ, Dubnick B, Herzig DJ (1973) The inhibition by disodium cromoglycate in vitro of anaphylactically induced histamine release from rat peritoneal mast cells. J Pharmacol Exp Ther 184(1):41–46

    CAS  PubMed  Google Scholar 

  74. Ashmole I, Duffy SM, Leyland ML et al (2012) CRACM/Orai ion channel expression and function in human lung mast cells. J Allergy Clin Immunol 129(6):1628–1635.e2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Theoharides TC, Wang L, Pang X et al (2000) Cloning and cellular localization of the rat mast cell 78-kDa protein phosphorylated in response to the mast cell “stabilizer” cromolyn. J Pharmacol Exp Ther 294(3):810–821

    CAS  PubMed  Google Scholar 

  76. Jin Y, Silverman AJ, Vannucci SJ (2007) Mast cell stabilization limits hypoxic-ischemic brain damage in the immature rat. Dev Neurosci 29(4-5):373–384

    Article  CAS  PubMed  Google Scholar 

  77. Bañuelos-Cabrera I, Cuéllar-Huerta M, Velasco AL (2016) Pharmacoresistant temporal lobe epilepsy modifies histamine turnover and H3 receptor function in the human hippocampus and temporal neocortex. Epilepsia 57:e76–e80. doi:10.1111/epi.13329

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Francia Carmona for their technical assistance and the National Council for Sciences and Technology of Mexico for the support provided for developing this study (grant 220365 and scholarship 380140).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Guadalupe Valle-Dorado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Valle-Dorado, M.G., Córdova-Dávalos, L.E., Pérez-Pérez, D., Guevara-Guzmán, R., Rocha, L. (2016). The Use of Anti-inflammatory Drugs in Epilepsy. In: Talevi, A., Rocha, L. (eds) Antiepileptic Drug Discovery. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6355-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6355-3_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6353-9

  • Online ISBN: 978-1-4939-6355-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics