Skip to main content

Helper-Dependent Adenoviral Vectors and Their Use for Neuroscience Applications

  • Protocol
  • First Online:
High-Resolution Imaging of Cellular Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1474))

Abstract

Neuroscience research has been revolutionized by the use of recombinant viral vector technology from the basic, preclinical and clinical levels. Currently, multiple recombinant viral vector types are employed with each having its strengths and weaknesses depending on the proposed application. Helper-dependent adenoviral vectors (HdAd) are emerging as ideal viral vectors that solve a major need in the neuroscience field: (1) expression of transgenes that are too large to be packaged by other viral vectors and (2) rapid onset of transgene expression in the absence of cytotoxicity. Here, we describe the methods for large-scale production of HdAd viral vectors for in vivo use with neurospecific transgene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hurtado-Lorenzo A, Millan E, Gonzalez-Nicolini V, Suwelack D et al (2004) Differentiation and transcription factor gene therapy in experimental parkinson’s disease: sonic hedgehog and Gli-1, but not Nurr-1, protect nigrostriatal cell bodies from 6-OHDA-induced neurodegeneration. Mol Ther 10:507–524

    Article  CAS  PubMed Central  Google Scholar 

  2. Sarac MS, Windeatt S, Castro MG et al (2002) Intrapituitary adenoviral administration of 7B2 can extend life span and reverse endocrinological deficiencies in 7B2 null mice. Endocrinology 143:2314–2323

    Article  CAS  Google Scholar 

  3. Xiong W, Goverdhana S et al (2006) Regulatable gutless adenovirus vectors sustain inducible transgene expression in the brain in the presence of an immune response against adenoviruses. J Virol 80:27–37

    Article  CAS  PubMed Central  Google Scholar 

  4. Boettcher M, McManus MT (2015) Choosing the right tool for the job: RNAi, TALEN, or CRISPR. Mol Cell 58:575–585

    Article  CAS  PubMed Central  Google Scholar 

  5. Crotty S, Pipkin ME (2015) In vivo RNAi screens: concepts and applications. Trends Immunol 36:315–322

    Article  CAS  PubMed Central  Google Scholar 

  6. Dyawanapelly S, Ghodke SB, Vishwanathan R et al (2014) RNA interference-based therapeutics: molecular platforms for infectious diseases. J Biomed Nanotechnol 10:1998–2037

    Article  CAS  Google Scholar 

  7. Sanchez-Rivera FJ, Jacks T (2015) Applications of the CRISPR-Cas9 system in cancer biology. Nat Rev Cancer 15:387–395

    Article  CAS  PubMed Central  Google Scholar 

  8. Shen H, McHale CM, Smith MT et al (2015) Functional genomic screening approaches in mechanistic toxicology and potential future applications of CRISPR-Cas9. Mutat Res Rev Mutat Res 764:31–42

    Article  CAS  PubMed Central  Google Scholar 

  9. Taylor J, Woodcock S (2015) A perspective on the future of high-throughput RNAi screening: will CRISPR cut out the competition or can RNAi help guide the way? J Biomol Screen 20:1040–1051

    Article  CAS  Google Scholar 

  10. Montesinos MS, Chen Z, Young SM Jr (2011) pUNISHER: a high-level expression cassette for use with recombinant viral vectors for rapid and long term in vivo neuronal expression in the CNS. J Neurophysiol 106:3230–3244

    Article  CAS  Google Scholar 

  11. Tong H, Kopp-Scheinpflug C et al (2013) Protection from noise-induced hearing loss by Kv2.2 potassium currents in the central medial olivocochlear system. J Neurosci 33:9113–9121

    Article  CAS  Google Scholar 

  12. Chen Z, Cooper B, Kalla S et al (2013) The Munc13 proteins differentially regulate readily releasable pool dynamics and calcium-dependent recovery at a central synapse. J Neurosci 33:8336–8351

    Article  CAS  Google Scholar 

  13. Lentz TB, Gray SJ, Samulski RJ (2012) Viral vectors for gene delivery to the central nervous system. Neurobiol Dis 48:179–188

    Article  CAS  Google Scholar 

  14. Cockrell AS, Kafri T (2007) Gene delivery by lentivirus vectors. Mol Biotechnol 36:184–204

    Article  CAS  Google Scholar 

  15. Palmer DJ, Ng P (2005) Helper-dependent adenoviral vectors for gene therapy. Hum Gene Ther 16:1–16

    Article  CAS  Google Scholar 

  16. Brunetti-Pierri N, Ng T et al (2006) Improved hepatic transduction, reduced systemic vector dissemination, and long-term transgene expression by delivering helper-dependent adenoviral vectors into the surgically isolated liver of nonhuman primates. Hum Gene Ther 17:391–404

    Article  CAS  Google Scholar 

  17. Danthinne X, Imperiale MJ (2000) Production of first generation adenovirus vectors: a review. Gene Ther 7:1707–1714

    Article  CAS  Google Scholar 

  18. Muhammad AK, Puntel M et al (2010) Study of the efficacy, biodistribution, and safety profile of therapeutic gutless adenovirus vectors as a prelude to a phase I clinical trial for glioblastoma. Clin Pharmacol Ther 88:204–213

    Article  CAS  PubMed Central  Google Scholar 

  19. Vetrini F, Ng P (2010) Gene therapy with helper-dependent adenoviral vectors: current advances and future perspectives. Viruses 2:1886–1917

    Article  CAS  PubMed Central  Google Scholar 

  20. Palmer DJ, Ng P (2011) Rescue, amplification, and large-scale production of helper-dependent adenoviral vectors. Cold Spring Harb Protoc 2011:857–866

    Google Scholar 

  21. Palmer DJ, Ng P (2011) Characterization of helper-dependent adenoviral vectors. Cold Spring Harb Protoc 2011:867–870

    Google Scholar 

  22. Puntel M, Curtin JF et al (2006) Quantification of high-capacity helper-dependent adenoviral vector genomes in vitro and in vivo, using quantitative TaqMan real-time polymerase chain reaction. Hum Gene Ther 17:531–544

    Article  CAS  PubMed Central  Google Scholar 

  23. Toietta G, Pastore L, Cerullo V et al (2002) Generation of helper-dependent adenoviral vectors by homologous recombination. Mol Ther 5:204–210

    Article  CAS  Google Scholar 

  24. Bett AJ, Prevec L, Graham FL (1993) Packaging capacity and stability of human adenovirus type 5 vectors. J Virol 67:5911–5921

    CAS  PubMed Central  Google Scholar 

  25. Parks RJ, Graham FL (1997) A helper-dependent system for adenovirus vector production helps define a lower limit for efficient DNA packaging. J Virol 71:3293–3298

    CAS  PubMed Central  Google Scholar 

  26. Palmer D, Ng P (2003) Improved system for helper-dependent adenoviral vector production. Mol Ther 8:846–852

    Article  CAS  Google Scholar 

  27. Parks RJ, Chen L, Anton M et al (1996) A helper-dependent adenovirus vector system: removal of helper virus by Cre-mediated excision of the viral packaging signal. Proc Natl Acad Sci U S A 93:13565–13570

    Article  CAS  PubMed Central  Google Scholar 

  28. Sakhuja K, Reddy PS et al (2003) Optimization of the generation and propagation of gutless adenoviral vectors. Hum Gene Ther 14:243–254

    Article  CAS  Google Scholar 

  29. Ng P, Evelegh C, Cummings D et al (2002) Cre levels limit packaging signal excision efficiency in the Cre/loxP helper-dependent adenoviral vector system. J Virol 76:4181–4189

    Article  CAS  PubMed Central  Google Scholar 

  30. Hardy S, Kitamura M, Harris-Stansil T et al (1997) Construction of adenovirus vectors through Cre-lox recombination. J Virol 71:1842–1849

    CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Max Planck Society, grants from the Michael J. Fox Foundation, and R01 grant from the National Institutes of Health, National Institute on Deafness and Other Communication Disorders (NIDCD) DC014093-01 and National Eye Institute (NEI) R21 awarded to 5R21EY023408 S.M.Y., Jr.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel M. Young Jr. Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Montesinos, M.S., Satterfield, R., Young, S.M. (2016). Helper-Dependent Adenoviral Vectors and Their Use for Neuroscience Applications. In: Schwartzbach, S., Skalli, O., Schikorski, T. (eds) High-Resolution Imaging of Cellular Proteins. Methods in Molecular Biology, vol 1474. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6352-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6352-2_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6350-8

  • Online ISBN: 978-1-4939-6352-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics