Meiosis pp 277-288 | Cite as

Drosophila Male Meiosis

  • Silvia Bonaccorsi
  • Maurizio GattiEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1471)


In Drosophila males, there is no synaptonemal complex and recombination does not occur. Thus, Drosophila male meiosis is a good model system for the analysis of achiasmate chromosome segregation. In addition, due to their large size, the meiotic spindles of Drosophila males are an excellent system for mutational dissection of the mechanisms of spindle assembly. Here, we describe the main techniques for visualization of live Drosophila testes and for preparation of fixed meiotic chromosomes and spindles.

Key words

Male meiosis Live analysis Spermatogenesis Chromosomes Meiotic spindle Immunostaining Drosophila 



This work has been supported by a PRIN grant to SB and an AIRC grant (IG 16020) to MG.


  1. 1.
    McKee BD, Yan R, Tsai JH (2012) Meiosis in male Drosophila. Spermatogenesis 2:167–184CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Rebollo E, González C (2000) Visualizing the spindle checkpoint in Drosophila spermatocytes. EMBO Rep 1:65–70CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Wakefield JG, Bonaccorsi S, Gatti M (2001) The Drosophila protein Asp is involved in microtubule organization during spindle formation and cytokinesis. J Cell Biol 153:637–648CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Gunsalus KC, Bonaccorsi S, Williams E, Verni F, Gatti M, Goldberg ML (1995) Mutations in twinstar, a Drosophila gene encoding a cofilin/ADF homolog, result in defects in centrosome migration and cytokinesis. J Cell Biol 131:1243–1259CrossRefPubMedGoogle Scholar
  5. 5.
    Lindsley DL, Tokuyasu KT (1980) Spermatogenesis. In: Ashburner M, Wright TRF (eds) The genetics and biology of Drosophila, vol 2b. Academic, London, pp 225–294Google Scholar
  6. 6.
    Fuller MT (1993) Spermatogenesis. In: Arias AM, Bate M (eds) The development of Drosophila melanogaster, vol 1. Cold Spring Harbor Laboratory, New York, pp 71–147Google Scholar
  7. 7.
    Fabian L, Brill JA (2012) Drosophila spermiogenesis: big things come from little packages. Spermatogenesis 2:197–212CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Cenci G, Bonaccorsi S, Pisano C, Verni F, Gatti M (1994) Chromatin and microtubule organization during premeiotic, meiotic, and early postmeiotic stages of Drosophila melanogaster spermatogenesis. J Cell Sci 107:3521–3534PubMedGoogle Scholar
  9. 9.
    Bonaccorsi S, Pisano C, Puoti F, Gatti M (1988) Y chromosome loops in Drosophila melanogaster. Genetics 120:1015–1034PubMedPubMedCentralGoogle Scholar
  10. 10.
    Lattao R, Bonaccorsi S, Gatti M (2012) Giant meiotic spindles in males from Drosophila species with giant sperm tails. J Cell Sci 125:584–588CrossRefPubMedGoogle Scholar
  11. 11.
    Bonaccorsi S, Giansanti MG, Gatti M (1998) Spindle self-organization and cytokinesis during male meiosis in asterless mutants of Drosophila melanogaster. J Cell Biol 142:751–761CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bucciarelli E, Giansanti MG, Bonaccorsi S, Gatti M (2003) Spindle assembly and cytokinesis in the absence of chromosomes during Drosophila male meiosis. J Cell Biol 160:993–999CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Gatti M, Bucciarelli E, Lattao R, Pellacani C, Mottier-Pavie V, Giansanti MG, Somma MP, Bonaccorsi S (2012) The relative roles of centrosomal and kinetochore-driven microtubules in Drosophila spindle formation. Exp Cell Res 318:1375–1380CrossRefPubMedGoogle Scholar
  14. 14.
    Tates AD (1971) Cytodifferentiation during spermatogenesis in Drosophila melanogaster: an electron microscope study. Ph. D. Thesis, Rijksuniversiteit, Leiden. (Tates’ Thesis has been extensively reviewed by Fuller, 1993)Google Scholar
  15. 15.
    Riparbelli MG, Callaini G, Megraw TL (2012) Assembly and persistence of primary cilia in dividing Drosophila spermatocytes. Dev Cell 23:425–432CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wakimoto BT, Lindsley DL, Herrera C (2004) Toward a comprehensive genetic analysis of male fertility in Drosophila melanogaster. Genetics 167:207–216CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Gonzalez C, Casal J, Ripoll P (1989) Relationship between chromosome content and nuclear diameter in early spermatids of Drosophila melanogaster. Genet Res (Camb) 54:205–212CrossRefGoogle Scholar
  18. 18.
    Giansanti MG, Farkas RM, Bonaccorsi S, Lindsley DL, Wakimoto B, Fuller MT, Gatti M (2004) Genetic dissection of meiotic cytokinesis in Drosophila males. Mol Biol Cell 15:2509–2522CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Giansanti MG, Fuller MT (2012) What Drosophila spermatocytes tell us about the mechanisms underlying cytokinesis. Cytoskeleton (Hoboken) 69:869–881CrossRefGoogle Scholar
  20. 20.
    Thomas SE, McKee BD (2009) Analysis of chromosome dynamics and chromosomal proteins in Drosophila spermatocytes. Methods Mol Biol 558:217–234CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Biology and Biotechnology “Charles Darwin”, SapienzaUniversity of RomeRomeItaly
  2. 2.Institute of Molecular Biology and Pathology (IBPM) of CNRRomeItaly

Personalised recommendations