Meiosis pp 1-23 | Cite as

Genetic Approaches to Study Meiosis and Meiosis-Specific Gene Expression in Saccharomyces cerevisiae

  • Yona KassirEmail author
  • David T. Stuart
Part of the Methods in Molecular Biology book series (MIMB, volume 1471)


The budding yeast Saccharomyces cerevisiae has a long history as a model organism for studies of meiosis and the cell cycle. The popularity of this yeast as a model is in large part due to the variety of genetic and cytological approaches that can be effectively performed with the cells. Cultures of the cells can be induced to synchronously progress through meiosis and sporulation allowing large-scale gene expression and biochemical studies to be performed. Additionally, the spore tetrads resulting from meiosis make it possible to characterize the haploid products of meiosis allowing investigation of meiotic recombination and chromosome segregation. Here we describe genetic methods for analysis progression of S. cerevisiae through meiosis and sporulation with an emphasis on strategies for the genetic analysis of regulators of meiosis-specific genes.

Key words

Meiosis Yeast Sporulation Tetrad Ascus Recombination Reporter gene Gene expression 



D.T.S. acknowledges the Natural Sciences and Engineering Research Council of Canada (NSERC) for research support from Discovery Grant numbers 03673 and 262070.


  1. 1.
    Chu S, DeRisi J, Eisen M, Mulholland J, Botstein D, Brown PO, Herskowitz I (1998) The transcriptional program of sporulation in budding yeast. Science 282(5389):699–705CrossRefPubMedGoogle Scholar
  2. 2.
    Kassir Y, Adir N, Boger-Nadjar E, Raviv NG, Rubin-Bejerano I, Sagee S, Shenhar G (2003) Transcriptional regulation of meiosis in budding yeast. Int Rev Cytol 224:111–171CrossRefPubMedGoogle Scholar
  3. 3.
    Primig M, Williams RM, Winzeler EA, Tevzadze GG, Conway AR, Hwang SY, Davis RW, Esposito RE (2000) The core meiotic transcriptome in budding yeasts. Nat Genet 26(4):415–423. doi: 10.1038/82539 CrossRefPubMedGoogle Scholar
  4. 4.
    Malone RE, Esposito RE (1981) Recombinationless meiosis in Saccharomyces cerevisiae. Mol Cell Biol 1(10):891–901CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lydall D, Nikolsky Y, Bishop DK, Weinert T (1996) A meiotic recombination checkpoint controlled by mitotic checkpoint genes. Nature 383(6603):840–843. doi: 10.1038/383840a0 CrossRefPubMedGoogle Scholar
  6. 6.
    Padmore R, Cao L, Kleckner N (1991) Temporal comparison of recombination and synaptonemal complex formation during meiosis in S. cerevisiae. Cell 66(6):1239–1256CrossRefPubMedGoogle Scholar
  7. 7.
    Matsuura A, Treinin M, Mitsuzawa H, Kassir Y, Uno I, Simchen G (1990) The adenylate cyclase/protein kinase cascade regulates entry into meiosis in Saccharomyces cerevisiae through the gene IME1. EMBO J 9(10):3225–3232PubMedPubMedCentralGoogle Scholar
  8. 8.
    Biss M, Hanna MD, Xiao W (2014) Isolation of yeast nucleic acids. Methods Mol Biol 1163:15–21. doi: 10.1007/978-1-4939-0799-1_2 CrossRefPubMedGoogle Scholar
  9. 9.
    Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9(12):3273–3297CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Sagee S, Sherman A, Shenhar G, Robzyk K, Ben-Doy N, Simchen G, Kassir Y (1998) Multiple and distinct activation and repression sequences mediate the regulated transcription of IME1, a transcriptional activator of meiosis-specific genes in Saccharomyces cerevisiae. Mol Cell Biol 18(4):1985–1995CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kahana S, Pnueli L, Kainth P, Sassi HE, Andrews B, Kassir Y (2010) Functional dissection of IME1 transcription using quantitative promoter-reporter screening. Genetics 186(3):829–841. doi: 10.1534/genetics.110.122200 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kunz BA, Pierce MK, Mis JR, Giroux CN (1987) DNA sequence analysis of the mutational specificity of u.v. light in the SUP4-o gene of yeast. Mutagenesis 2(6):445–453CrossRefPubMedGoogle Scholar
  13. 13.
    Kassir Y, Simchen G (1985) Mutations leading to expression of the cryptic HMRa locus in the yeast Saccharomyces cerevisiae. Genetics 109(3):481–492PubMedPubMedCentralGoogle Scholar
  14. 14.
    Jensen RE, Herskowitz I (1984) Directionality and regulation of cassette substitution in yeast. Cold Spring Harb Symp Quant Biol 49:97–104CrossRefPubMedGoogle Scholar
  15. 15.
    Wach A, Brachat A, Pohlmann R, Philippsen P (1994) New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10(13):1793–1808CrossRefPubMedGoogle Scholar
  16. 16.
    Madhani HD, Styles CA, Fink GR (1997) MAP kinases with distinct inhibitory functions impart signaling specificity during yeast differentiation. Cell 91(5):673–684CrossRefPubMedGoogle Scholar
  17. 17.
    Stevenson BJ, Rhodes N, Errede B, Sprague GF Jr (1992) Constitutive mutants of the protein kinase STE11 activate the yeast pheromone response pathway in the absence of the G protein. Genes Dev 6(7):1293–1304CrossRefPubMedGoogle Scholar
  18. 18.
    Elrod SL, Chen SM, Schwartz K, Shuster EO (2009) Optimizing sporulation conditions for different Saccharomyces cerevisiae strain backgrounds. Methods Mol Biol 557:21–26. doi: 10.1007/978-1-59745-527-5_2 CrossRefPubMedGoogle Scholar
  19. 19.
    Sancar GB (2000) Enzymatic photoreactivation: 50 years and counting. Mutat Res 451(1-2):25–37CrossRefPubMedGoogle Scholar
  20. 20.
    Rose MD, Broach JR (1991) Cloning genes by complementation in yeast. Methods Enzymol 194:195–230CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of BiologyTechnion-Israel Institute of TechnologyTechnion CityIsrael
  2. 2.Department of BiochemistryUniversity of AlbertaEdmontonCanada

Personalised recommendations