Skip to main content

In Vitro High-Throughput RNAi Screening to Accelerate the Process of Target Identification and Drug Development

  • Protocol
  • First Online:
High-Throughput RNAi Screening

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1470))

Abstract

High-throughput RNA interference (HT-RNAi) is a powerful tool that can be used to knock down gene expression in order to identify novel genes and pathways involved in many cellular processes. It is a systematic, yet unbiased, approach to identify essential or synthetic lethal genes that promote cell survival in diseased cells as well as genes that confer resistance or sensitivity to drug treatment. This information serves as a foundation for enhancing current treatments for cancer and other diseases by identifying new drug targets, uncovering potential combination therapies, and helping clinicians match patients with the most effective treatment based on genetic information. Here, we describe the method of performing an in vitro HT-RNAi screen using chemically synthesized siRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal N, Dasaradhi PV et al (2003) RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev 67(4):657–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Boutros M, Ahringer J (2008) The art and design of genetic screens: RNA interference. Nat Rev Genet 9(7):554–566

    Article  CAS  PubMed  Google Scholar 

  3. Caplen NJ, Parrish S et al (2001) Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc Natl Acad Sci U S A 98(17):9742–9747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Duxbury MS, Whang EE (2004) RNA interference: a practical approach. J Surg Res 117(2):339–344

    Article  CAS  PubMed  Google Scholar 

  5. Elbashir SM, Harborth J et al (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411(6836):494–498

    Article  CAS  PubMed  Google Scholar 

  6. Bartlett DW, Davis ME (2006) Insights into the kinetics of siRNA-mediated gene silencing from live-cell and live-animal bioluminescent imaging. Nucleic Acids Res 34(1):322–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Life Technologies. Duration of siRNA induced silencing: your questions answered. https://www.lifetechnologies.com/us/en/home/references/ambion-tech-support/rnai-sirna/tech-notes/duration-of-sirna-induced-silencing.html. Accessed 30 Jul 2015

  8. Ganesan AK, Ho H et al (2008) Genome-wide siRNA-based functional genomics of pigmentation identifies novel genes and pathways that impact melanogenesis in human cells. PLoS Genet 4(12):e1000298

    Article  PubMed  PubMed Central  Google Scholar 

  9. Henderson-Smith A, Chow D et al (2013) SMG1 identified as a regulator of Parkinson’s disease-associated alpha-synuclein through siRNA screening. PLoS One 8(10):e77711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Petrocca F, Altschuler G et al (2013) A genome-wide siRNA screen identifies proteasome addiction as a vulnerability of basal-like triple-negative breast cancer cells. Cancer Cell 24(2):182–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tiedemann RE, Zhu YX et al (2011) Identification of molecular vulnerabilities in human multiple myeloma cells by RNA interference lethality screening of the druggable genome. Cancer Res 72(3):757–768

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tiedemann RE, Zhu YX et al (2010) Kinome-wide RNAi studies in human multiple myeloma identify vulnerable kinase targets, including a lymphoid-restricted kinase, GRK6. Blood 115(8):1594–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Scholl C, Frohling S et al (2009) Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell 137(5):821–834

    Article  CAS  PubMed  Google Scholar 

  14. Turner NC, Lord CJ et al (2008) A synthetic lethal siRNA screen identifying genes mediating sensitivity to a PARP inhibitor. EMBO J 27(9):1368–1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Whitehurst AW, Bodemann BO et al (2007) Synthetic lethal screen identification of chemosensitizer loci in cancer cells. Nature 446(7137):815–819

    Article  CAS  PubMed  Google Scholar 

  16. Harradine KA, Kassner M et al (2011) Functional genomics reveals diverse cellular processes that modulate tumor cell response to oxaliplatin. Mol Cancer Res 9(2):173–182

    Article  CAS  PubMed  Google Scholar 

  17. Zhu YX, Tiedemann R et al (2011) RNAi screen of the druggable genome identifies modulators of proteasome inhibitor sensitivity in myeloma including CDK5. Blood 117(14):3847–3857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhu YX, Yin H et al (2015) RNA interference screening identifies lenalidomide sensitizers in multiple myeloma, including RSK2. Blood 125(3):483–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xie L, Kassner M et al (2012) Kinome-wide siRNA screening identifies molecular targets mediating the sensitivity of pancreatic cancer cells to Aurora kinase inhibitors. Biochem Pharmacol 83(4):452–461

    Article  CAS  PubMed  Google Scholar 

  20. Falkenberg KJ, Gould CM et al (2014) Genome-wide functional genomic and transcriptomic analyses for genes regulating sensitivity to vorinostat. Sci Data 1:140017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. MacKeigan JP, Murphy LO et al (2005) Sensitized RNAi screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance. Nat Cell Biol 7(6):591–600

    Article  CAS  PubMed  Google Scholar 

  22. Bartz SR, Zhang Z et al (2006) Small interfering RNA screens reveal enhanced cisplatin cytotoxicity in tumor cells having both BRCA network and TP53 disruptions. Mol Cell Biol 26(24):9377–9386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Giroux V, Iovanna J et al (2006) Probing the human kinome for kinases involved in pancreatic cancer cell survival and gemcitabine resistance. FASEB J 20(12):1982–1991

    Article  CAS  PubMed  Google Scholar 

  24. Iorns E, Lord CJ et al (2009) Parallel RNAi and compound screens identify the PDK1 pathway as a target for tamoxifen sensitization. Biochem J 417(1):361–370

    Article  CAS  PubMed  Google Scholar 

  25. Lord CJ, McDonald S et al (2008) A high-throughput RNA interference screen for DNA repair determinants of PARP inhibitor sensitivity. DNA Repair (Amst) 7(12):2010–2019

    Article  CAS  Google Scholar 

  26. Morgan-Lappe S, Woods KW et al (2006) RNAi-based screening of the human kinome identifies Akt-cooperating kinases: a new approach to designing efficacious multitargeted kinase inhibitors. Oncogene 25(9):1340–1348

    Article  CAS  PubMed  Google Scholar 

  27. Bogenberger JM, Kornblau SM et al (2014) BCL-2 family proteins as 5-Azacytidine-sensitizing targets and determinants of response in myeloid malignancies. Leukemia 28(8):1657–1665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tibes R, Bogenberger JM et al (2012) RNAi screening of the kinome with cytarabine in leukemias. Blood 119(12):2863–2872

    Article  CAS  PubMed  Google Scholar 

  29. Yin H, Kiefer J, Kassner M, Tang N, Mousses S (2010) The application of high-throughput RNAi in pancreatic cancer target discovery and drug development. In: Han H, Grippo P (eds) Drug discovery in pancreatic cancer. Springer Science + Business Media, LLC, New York, pp 153–170

    Chapter  Google Scholar 

Download references

Acknowledgements

We would like to thank TGen for their support, Mr. Chris Sereduk for editing, and Springer Publishing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Yin, H., Kassner, M. (2016). In Vitro High-Throughput RNAi Screening to Accelerate the Process of Target Identification and Drug Development. In: Azorsa, D., Arora, S. (eds) High-Throughput RNAi Screening. Methods in Molecular Biology, vol 1470. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6337-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6337-9_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6335-5

  • Online ISBN: 978-1-4939-6337-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics