Advertisement

In Vitro High-Throughput RNAi Screening to Accelerate the Process of Target Identification and Drug Development

  • Hongwei YinEmail author
  • Michelle Kassner
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1470)

Abstract

High-throughput RNA interference (HT-RNAi) is a powerful tool that can be used to knock down gene expression in order to identify novel genes and pathways involved in many cellular processes. It is a systematic, yet unbiased, approach to identify essential or synthetic lethal genes that promote cell survival in diseased cells as well as genes that confer resistance or sensitivity to drug treatment. This information serves as a foundation for enhancing current treatments for cancer and other diseases by identifying new drug targets, uncovering potential combination therapies, and helping clinicians match patients with the most effective treatment based on genetic information. Here, we describe the method of performing an in vitro HT-RNAi screen using chemically synthesized siRNA.

Key words

High-throughput RNA interference (RNAi) siRNA Target discovery Drug development Drug sensitizer Gene knockdown Functional genomics Gene silencing Essential gene Synthetic lethal 

Notes

Acknowledgements

We would like to thank TGen for their support, Mr. Chris Sereduk for editing, and Springer Publishing.

References

  1. 1.
    Agrawal N, Dasaradhi PV et al (2003) RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev 67(4):657–685CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Boutros M, Ahringer J (2008) The art and design of genetic screens: RNA interference. Nat Rev Genet 9(7):554–566CrossRefPubMedGoogle Scholar
  3. 3.
    Caplen NJ, Parrish S et al (2001) Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc Natl Acad Sci U S A 98(17):9742–9747CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Duxbury MS, Whang EE (2004) RNA interference: a practical approach. J Surg Res 117(2):339–344CrossRefPubMedGoogle Scholar
  5. 5.
    Elbashir SM, Harborth J et al (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411(6836):494–498CrossRefPubMedGoogle Scholar
  6. 6.
    Bartlett DW, Davis ME (2006) Insights into the kinetics of siRNA-mediated gene silencing from live-cell and live-animal bioluminescent imaging. Nucleic Acids Res 34(1):322–333CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Life Technologies. Duration of siRNA induced silencing: your questions answered. https://www.lifetechnologies.com/us/en/home/references/ambion-tech-support/rnai-sirna/tech-notes/duration-of-sirna-induced-silencing.html. Accessed 30 Jul 2015
  8. 8.
    Ganesan AK, Ho H et al (2008) Genome-wide siRNA-based functional genomics of pigmentation identifies novel genes and pathways that impact melanogenesis in human cells. PLoS Genet 4(12):e1000298CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Henderson-Smith A, Chow D et al (2013) SMG1 identified as a regulator of Parkinson’s disease-associated alpha-synuclein through siRNA screening. PLoS One 8(10):e77711CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Petrocca F, Altschuler G et al (2013) A genome-wide siRNA screen identifies proteasome addiction as a vulnerability of basal-like triple-negative breast cancer cells. Cancer Cell 24(2):182–196CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Tiedemann RE, Zhu YX et al (2011) Identification of molecular vulnerabilities in human multiple myeloma cells by RNA interference lethality screening of the druggable genome. Cancer Res 72(3):757–768CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Tiedemann RE, Zhu YX et al (2010) Kinome-wide RNAi studies in human multiple myeloma identify vulnerable kinase targets, including a lymphoid-restricted kinase, GRK6. Blood 115(8):1594–1604CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Scholl C, Frohling S et al (2009) Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell 137(5):821–834CrossRefPubMedGoogle Scholar
  14. 14.
    Turner NC, Lord CJ et al (2008) A synthetic lethal siRNA screen identifying genes mediating sensitivity to a PARP inhibitor. EMBO J 27(9):1368–1377CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Whitehurst AW, Bodemann BO et al (2007) Synthetic lethal screen identification of chemosensitizer loci in cancer cells. Nature 446(7137):815–819CrossRefPubMedGoogle Scholar
  16. 16.
    Harradine KA, Kassner M et al (2011) Functional genomics reveals diverse cellular processes that modulate tumor cell response to oxaliplatin. Mol Cancer Res 9(2):173–182CrossRefPubMedGoogle Scholar
  17. 17.
    Zhu YX, Tiedemann R et al (2011) RNAi screen of the druggable genome identifies modulators of proteasome inhibitor sensitivity in myeloma including CDK5. Blood 117(14):3847–3857CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zhu YX, Yin H et al (2015) RNA interference screening identifies lenalidomide sensitizers in multiple myeloma, including RSK2. Blood 125(3):483–491CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Xie L, Kassner M et al (2012) Kinome-wide siRNA screening identifies molecular targets mediating the sensitivity of pancreatic cancer cells to Aurora kinase inhibitors. Biochem Pharmacol 83(4):452–461CrossRefPubMedGoogle Scholar
  20. 20.
    Falkenberg KJ, Gould CM et al (2014) Genome-wide functional genomic and transcriptomic analyses for genes regulating sensitivity to vorinostat. Sci Data 1:140017CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    MacKeigan JP, Murphy LO et al (2005) Sensitized RNAi screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance. Nat Cell Biol 7(6):591–600CrossRefPubMedGoogle Scholar
  22. 22.
    Bartz SR, Zhang Z et al (2006) Small interfering RNA screens reveal enhanced cisplatin cytotoxicity in tumor cells having both BRCA network and TP53 disruptions. Mol Cell Biol 26(24):9377–9386CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Giroux V, Iovanna J et al (2006) Probing the human kinome for kinases involved in pancreatic cancer cell survival and gemcitabine resistance. FASEB J 20(12):1982–1991CrossRefPubMedGoogle Scholar
  24. 24.
    Iorns E, Lord CJ et al (2009) Parallel RNAi and compound screens identify the PDK1 pathway as a target for tamoxifen sensitization. Biochem J 417(1):361–370CrossRefPubMedGoogle Scholar
  25. 25.
    Lord CJ, McDonald S et al (2008) A high-throughput RNA interference screen for DNA repair determinants of PARP inhibitor sensitivity. DNA Repair (Amst) 7(12):2010–2019CrossRefGoogle Scholar
  26. 26.
    Morgan-Lappe S, Woods KW et al (2006) RNAi-based screening of the human kinome identifies Akt-cooperating kinases: a new approach to designing efficacious multitargeted kinase inhibitors. Oncogene 25(9):1340–1348CrossRefPubMedGoogle Scholar
  27. 27.
    Bogenberger JM, Kornblau SM et al (2014) BCL-2 family proteins as 5-Azacytidine-sensitizing targets and determinants of response in myeloid malignancies. Leukemia 28(8):1657–1665CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Tibes R, Bogenberger JM et al (2012) RNAi screening of the kinome with cytarabine in leukemias. Blood 119(12):2863–2872CrossRefPubMedGoogle Scholar
  29. 29.
    Yin H, Kiefer J, Kassner M, Tang N, Mousses S (2010) The application of high-throughput RNAi in pancreatic cancer target discovery and drug development. In: Han H, Grippo P (eds) Drug discovery in pancreatic cancer. Springer Science + Business Media, LLC, New York, pp 153–170CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Cancer and Cell Biology Division (CCB)Translational Genomics Research Institute (TGen)PhoenixUSA

Personalised recommendations