Skip to main content

Three-Dimensional Spheroid Cell Culture Model for Target Identification Utilizing High-Throughput RNAi Screens

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1470))

Abstract

The intrinsic limitations of 2D monolayer cell culture models have prompted the development of 3D cell culture model systems for in vitro studies. Multicellular tumor spheroid (MCTS) models closely simulate the pathophysiological milieu of solid tumors and are providing new insights into tumor biology as well as differentiation, tissue organization, and homeostasis. They are straightforward to apply in high-throughput screens and there is a great need for the development of reliable and robust 3D spheroid-based assays for high-throughput RNAi screening for target identification and cell signaling studies highlighting their potential in cancer research and treatment. In this chapter we describe a stringent standard operating procedure for the use of MCTS for high-throughput RNAi screens.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Pampaloni F, Reynaud EG, Stelzer EH (2007) The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 8(10):839–845

    Article  CAS  PubMed  Google Scholar 

  2. Hess MW et al (2010) 3D versus 2D cell culture implications for electron microscopy. Methods Cell Biol 96:649–670

    Article  PubMed  Google Scholar 

  3. Lee J, Cuddihy MJ, Kotov NA (2008) Three-dimensional cell culture matrices: state of the art. Tissue Eng Part B Rev 14(1):61–86

    Article  CAS  PubMed  Google Scholar 

  4. Bissell MJ, Hall HG, Parry G (1982) How does the extracellular matrix direct gene expression? J Theor Biol 99(1):31–68

    Article  CAS  PubMed  Google Scholar 

  5. Sutherland RM (1988) Cell and environment interactions in tumor microregions: the multicell spheroid model. Science 240(4849):177–184

    Article  CAS  PubMed  Google Scholar 

  6. Desoize B (2000) Contribution of three-dimensional culture to cancer research. Crit Rev Oncol Hematol 36(2-3):59–60

    Article  CAS  PubMed  Google Scholar 

  7. Friedrich J et al (2007) A reliable tool to determine cell viability in complex 3-d culture: the acid phosphatase assay. J Biomol Screen 12(7):925–937

    Article  CAS  PubMed  Google Scholar 

  8. Friedrich J, Seidel C, Ebner R, Kunz-Schughart LA (2009) Spheroid-based drug screen: considerations and practical approach. Nat Protoc 4(3):309–324

    Article  CAS  PubMed  Google Scholar 

  9. Mueller-Klieser W (1987) Multicellular spheroids. A review on cellular aggregates in cancer research. J Cancer Res Clin Oncol 113(2):101–122

    Article  CAS  PubMed  Google Scholar 

  10. Jiang Y, Pjesivac-Grbovic J, Cantrell C, Freyer JP (2005) A multiscale model for avascular tumor growth. Biophys J 89(6):3884–3894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stein AM, Demuth T, Mobley D, Berens M, Sander LM (2007) A mathematical model of glioblastoma tumor spheroid invasion in a three-dimensional in vitro experiment. Biophys J 92(1):356–365

    Article  CAS  PubMed  Google Scholar 

  12. Abbott A (2003) Cell culture: biology’s new dimension. Nature 424(6951):870–872

    Article  CAS  PubMed  Google Scholar 

  13. Elliott NT, Yuan F (2011) A review of three-dimensional in vitro tissue models for drug discovery and transport studies. J Pharm Sci 100(1):59–74

    Article  CAS  PubMed  Google Scholar 

  14. Hirschhaeuser F et al (2010) Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol 148(1):3–15

    Article  CAS  PubMed  Google Scholar 

  15. Kunz-Schughart LA, Freyer JP, Hofstaedter F, Ebner R (2004) The use of 3-D cultures for high-throughput screening: the multicellular spheroid model. J Biomol Screen 9(4):273–285

    Article  CAS  PubMed  Google Scholar 

  16. Kim JB (2005) Three-dimensional tissue culture models in cancer biology. Semin Cancer Biol 15:365–377

    Article  PubMed  Google Scholar 

  17. Zietarska M et al (2007) Molecular description of a 3D in vitro model for the study of epithelial ovarian cancer (EOC). Mol Carcinog 46(10):872–885

    Article  CAS  PubMed  Google Scholar 

  18. Grun B et al (2009) Three-dimensional in vitro cell biology models of ovarian and endometrial cancer. Cell Prolif 42(2):219–228

    Article  CAS  PubMed  Google Scholar 

  19. Ghosh S et al (2005) Three-dimensional culture of melanoma cells profoundly affects gene expression profile: a high density oligonucleotide array study. J Cell Physiol 204(2):522–531

    Article  CAS  PubMed  Google Scholar 

  20. Justice BA, Badr NA, Felder RA (2009) 3D cell culture opens new dimensions in cell-based assays. Drug Discov Today 14(1):102–107

    Article  CAS  PubMed  Google Scholar 

  21. Bullen A (2008) Microscopic imaging techniques for drug discovery. Nat Rev Drug Discov 7(7):54–67

    Article  CAS  PubMed  Google Scholar 

  22. Bissell MJ, Rizki A, Mian IS (2003) Tissue architecture: the ultimate regulator of breast epithelial function. Curr Opin Cell Biol 15(6):753–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mroue R, Bissell MJ (2013) Three-dimensional cultures of mouse mammary epithelial cells. Methods Mol Biol 945:221–250

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rodriguez-Enriquez S et al (2008) Energy metabolism transition in multi-cellular human tumor spheroids. J Cell Physiol 216(1):189–197

    Article  CAS  PubMed  Google Scholar 

  25. Cukierman E, Pankov R, Stevens DR, Yamada KM (2001) Taking cell-matrix adhesions to the third dimension. Science 294(5547):1708–1712

    Article  CAS  PubMed  Google Scholar 

  26. Chambers KF et al (2011) Stroma regulates increased epithelial lateral cell adhesion in 3D culture: a role for actin/cadherin dynamics. PLoS One 6(4), e18796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Weaver VM et al (1997) Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J Cell Biol 137(1):231–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fong EL et al (2013) Modeling Ewing sarcoma tumors in vitro with 3D scaffolds. Proc Natl Acad Sci U S A 110(16):6500–6505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nichols GL et al (1994) Identification of CRKL as the constitutively phosphorylated 39-kD tyrosine phosphoprotein in chronic myelogenous leukemia cells. Blood 84(9):2912–2918

    CAS  PubMed  Google Scholar 

  30. Lamhamedi-Cherradi SE et al (2014) 3D tissue-engineered model of Ewing’s sarcoma. Adv Drug Deliv Rev 79–80:155–171

    Article  PubMed  Google Scholar 

  31. Vidi PA, Bissell MJ, Lelievre SA (2013) Three-dimensional culture of human breast epithelial cells: the how and the why. Methods Mol Biol 945:193–219

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fischbach C et al (2007) Engineering tumors with 3D scaffolds. Nat Methods 4(10):855–860

    Article  CAS  PubMed  Google Scholar 

  33. Ansari N, Muller S, Stelzer EH, Pampaloni F (2013) Quantitative 3D cell-based assay performed with cellular spheroids and fluorescence microscopy. Methods Cell Biol 113:295–309

    Article  CAS  PubMed  Google Scholar 

  34. Ivascu A, Kubbies M (2006) Rapid generation of single-tumor spheroids for high-throughput cell function and toxicity analysis. J Biomol Screen 11(8):922–932

    Article  CAS  PubMed  Google Scholar 

  35. Friedrich J, Ebner R, Kunz-Schughart LA (2007) Experimental anti-tumor therapy in 3-D: spheroids—old hat or new challenge? Int J Radiat Biol 83(11-12):849–871

    Article  CAS  PubMed  Google Scholar 

  36. Kelm JM, Timmins NE, Brown CJ, Fussenegger M, Nielsen LK (2003) Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnol Bioeng 83(2):173–180

    Article  CAS  PubMed  Google Scholar 

  37. Timmins NE, Dietmair S, Nielsen LK (2004) Hanging-drop multicellular spheroids as a model of tumour angiogenesis. Angiogenesis 7(2):97–103

    Article  PubMed  Google Scholar 

  38. Tung YC et al (2011) High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst 136(3):473–478

    Article  CAS  PubMed  Google Scholar 

  39. Lee GY, Kenny PA, Lee EH, Bissell MJ (2007) Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods 4(4):359–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huh D, Hamilton GA, Ingber DE (2011) From 3D cell culture to organs-on-chips. Trends Cell Biol 21(12):745–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bartholomesuz G, Rao A (2014) A three dimensional spheroid cell culture model for robust high throughput RNA interference screens. In: Trip RA, Karpilow J (eds) Frontiers in RNAi, vol 1. Bentham Science Publishers, pp 215–231

    Google Scholar 

  42. Yoshii Y et al (2011) The use of nanoimprinted scaffolds as 3D culture models to facilitate spontaneous tumor cell migration and well-regulated spheroid formation. Biomaterials 32(26):6052–6058

    Article  CAS  PubMed  Google Scholar 

  43. Kim JB, Stein R, O’Hare MJ (2004) Three-dimensional in vitro tissue culture models of breast cancer—a review. Breast Cancer Res Treat 85(3):281–291

    Article  PubMed  Google Scholar 

  44. Sutherland RM, McCredie JA, Inch WR (1971) Growth of multicell spheroids in tissue culture as a model of nodular carcinomas. J Natl Cancer Inst 46(1):113–120

    CAS  PubMed  Google Scholar 

  45. Dubessy C, Merlin JM, Marchal C, Guillemin F (2000) Spheroids in radiobiology and photodynamic therapy. Crit Rev Oncol Hematol 36(2-3):179–192

    Article  CAS  PubMed  Google Scholar 

  46. Kunz-Schughart LA, Kreutz M, Knuechel R (1998) Multicellular spheroids: a three-dimensional in vitro culture system to study tumour biology. Int J Exp Pathol 79(1):1–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kunz-Schughart LA (1999) Multicellular tumor spheroids: intermediates between monolayer culture and in vivo tumor. Cell Biol Int 23(3):157–161

    Article  CAS  PubMed  Google Scholar 

  48. Li CX et al (2006) Delivery of RNA interference. Cell Cycle 5(18):2130–2139

    Article  Google Scholar 

  49. Zhang S, Zhao B, Jiang H, Wang B, Ma B (2007) Cationic lipids and polymers mediated vectors for delivery of siRNA. J Control Release 123(1):1–10

    Article  CAS  PubMed  Google Scholar 

  50. Whitehead KA, Langer R, Anderson DG (2009) Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 8(2):129–138

    Article  CAS  PubMed  Google Scholar 

  51. Whitehurst AW et al (2007) Synthetic lethal screen identification of chemosensitizer loci in cancer cells. Nature 446:815–819

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey A. Bartholomeusz Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Iles, L.R., Bartholomeusz, G.A. (2016). Three-Dimensional Spheroid Cell Culture Model for Target Identification Utilizing High-Throughput RNAi Screens. In: Azorsa, D., Arora, S. (eds) High-Throughput RNAi Screening. Methods in Molecular Biology, vol 1470. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6337-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6337-9_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6335-5

  • Online ISBN: 978-1-4939-6337-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics