Advertisement

Preparing fMRI Data for Statistical Analysis

  • John AshburnerEmail author
Protocol
Part of the Neuromethods book series (NM, volume 119)

Abstract

This chapter describes the procedures applied to fMRI data prior to their statistical analysis. This usually begins with converting the data from original MR format to a form that can be used by the analysis software. The data are then motion corrected. If an anatomical scan is collected for the subject, then it would be coregistered with the fMRI, and may serve to estimate the warps needed to spatially normalize the fMRI to some standard space. The final processing step is usually to smooth the data.

Key words

Generative model fMRI Registration Artifact correction Spatial normalization Smoothing 

References

  1. 1.
    Talairach J, Tournoux P (1988) Coplanar stereotaxic atlas of the human brain. Thieme Medical, New YorkGoogle Scholar
  2. 2.
    Evans AC, Collins DL, Milner B (1992) An MRI-based stereotactic atlas from 250 young normal subjects. Soc Neurosci Abstr 18:408Google Scholar
  3. 3.
    Evans AC, Collins DL, Mills SR, Brown ED, Kelly RL, Peters TM. 3D statistical neuroanatomical models from 305 MRI volumes. In: Proc IEEE Nuclear Science Symposium and Medical Imaging Conference. 1993. pp 1813–1817Google Scholar
  4. 4.
    Jezzard P, Clare S (1999) Sources of distortion in functional MRI data. Hum Brain Mapp 8(2):80–85PubMedCrossRefGoogle Scholar
  5. 5.
    Hutton C, Bork A, Josephs O, Deichmann R, Ashburner J, Turner R (2002) Image distortion correction in fMRI: a quantitative evaluation. Neuroimage 16(1):217–240PubMedCrossRefGoogle Scholar
  6. 6.
    Cusack R, Papadakis N (2002) New robust 3-D phase unwrapping algorithms: application to magnetic field mapping and undistorting echoplanar images. Neuroimage 16(3):754–764PubMedCrossRefGoogle Scholar
  7. 7.
    Jenkinson M (2003) Fast, automated, N‐dimensional phase‐unwrapping algorithm. Magn Reson Med 49(1):193–197PubMedCrossRefGoogle Scholar
  8. 8.
    Jenkinson M, Wilson J, Jezzard P (2004) A perturbation method for magnetic field calculations of non-conductive objects. Magn Reson Med 52(3):471–477PubMedCrossRefGoogle Scholar
  9. 9.
    Poynton C, Jenkinson M, Whalen S, Golby AJ, Wells W III (2008) Fieldmap-free retrospective registration and distortion correction for EPI-based functional imaging. In: Proc Medical Image Computing and Computer-Assisted Intervention (MICCAI). Springer, Berlin-Heidelberg, pp 271–279Google Scholar
  10. 10.
    Poynton C, Jenkinson M, Wells W III (2009) Atlas-based improved prediction of magnetic field inhomogeneity for distortion correction of EPI data. In: Proc Medical Image Computing and Computer-Assisted Intervention (MICCAI). Springer, Berlin, pp 951–959Google Scholar
  11. 11.
    Studholme C, Constable RT, Duncan JS (2000) Accurate alignment of functional EPI data to anatomical MRI using a physics-based distortion model. IEEE Trans Med Imaging 19(11):1115–1127PubMedCrossRefGoogle Scholar
  12. 12.
    Kybic J, Thévenaz P, Nirkko A, Unser M (2000) Unwarping of unidirectionally distorted EPI images. IEEE Trans Med Imaging 19(2):80–93PubMedCrossRefGoogle Scholar
  13. 13.
    Li Y, Xu N, Fitzpatrick JM, Morgan VL, Pickens DR, Dawant BM (2007) Accounting for signal loss due to dephasing in the correction of distortions in gradient-echo EPI via nonrigid registration. IEEE Trans Med Imaging 26(12):1698–1707PubMedCrossRefGoogle Scholar
  14. 14.
    Hajnal JV, Mayers R, Oatridge A, Schwieso JE, Young JR, Bydder GM (1994) Artifacts due to stimulus correlated motion in functional imaging of the brain. Magn Reson Med 31:289–291CrossRefGoogle Scholar
  15. 15.
    Thévenaz P, Blu T, Unser M (2000) Interpolation revisited. IEEE Trans Med Imaging 19(7):739–758PubMedCrossRefGoogle Scholar
  16. 16.
    Eddy WF, Fitzgerald M, Noll DC (1996) Improved image registration by using Fourier interpolation. Magn Reson Med 36:923–931PubMedCrossRefGoogle Scholar
  17. 17.
    Cox RW, Jesmanowicz A (1999) Real-time 3D image registration for functional MRI. Magn Reson Med 42:1014–1018PubMedCrossRefGoogle Scholar
  18. 18.
    Noll DC, Boada FE, Eddy WF (1997) A spectral approach to analyzing slice selection in planar imaging: optimization for through-plane interpolation. Magn Reson Med 38:151–160PubMedCrossRefGoogle Scholar
  19. 19.
    Andersson JLR, Hutton C, Ashburner J, Turner R, Friston KJ (2001) Modeling geometric deformations in EPI time series. NeuroImage 13:903–919PubMedCrossRefGoogle Scholar
  20. 20.
    Bannister PR, Brady JM, Jenkinson M (2007) Integrating temporal information with a non-rigid method of motion correction for functional magnetic resonance images. Image Vis Comput 25(3):311–320CrossRefGoogle Scholar
  21. 21.
    Friston KJ, Williams S, Howard R, Frackowiak RSJ, Turner R (1996) Movement-related effects in fMRI time-series. Magn Reson Med 35:346–355PubMedCrossRefGoogle Scholar
  22. 22.
    Freire L, Mangin JF (2001) Motion correction algorithms of the brain mapping community create spurious functional activations. In: Insana MF, Leahy RM (eds) Proc Information Processing in Medical Imaging (IPMI), vol 2082, Lecture Notes in Computer Science. Springer, Berlin, pp 246–258CrossRefGoogle Scholar
  23. 23.
    Maclaren J, Herbst M, Speck O, Zaitsev M (2013) Prospective motion correction in brain imaging: a review. Magn Reson Med 69(3):621–636PubMedCrossRefGoogle Scholar
  24. 24.
    Woods RP, Mazziotta JC, Cherry SR (1993) MRI-PET registration with automated algorithm. J Comput Assist Tomogr 17:536–546PubMedCrossRefGoogle Scholar
  25. 25.
    Holden M, Hill DLG, Denton ERE, Jarosz JM, Cox TCS, Rohlfing T, Goodey J, Hawkes DJ (2000) Voxel similarity measures for 3D serial MR brain image registration. IEEE Trans Med Imaging 19(2):94–102PubMedCrossRefGoogle Scholar
  26. 26.
    Collignon A, Maes F, Delaere D, Vandermeulen D, Suetens P, Marchal G (1995) Automated multi-modality image registration based on information theory. In: Bizais Y, Barillot C, Di Paola R (eds) Proc Information Processing in Medical Imaging (IPMI). Kluwer Academic, Dordrecht, pp 263–274Google Scholar
  27. 27.
    Wells WM III, Viola P, Atsumi H, Nakajima S, Kikinis R (1996) Multi-modal volume registration by maximisation of mutual information. Med Image Anal 1(1):35–51PubMedCrossRefGoogle Scholar
  28. 28.
    Maes F, Collignon A, Vandermeulen D, Marchal G, Seutens P (1997) Multimodality image registration by maximisation of mutual information. IEEE Trans Image Process 16:187–197CrossRefGoogle Scholar
  29. 29.
    Studholme C, Hill DLG, Hawkes DJ (1999) An overlap invariant entropy measure of 3D medical image alignment. Pattern Recogn 32:71–86CrossRefGoogle Scholar
  30. 30.
    Pluim JPW, Maintz JBA, Viergever MA (2003) Mutual-information-based registration of medical images: a survey. IEEE Trans Med Imaging 22(8):986–1004PubMedCrossRefGoogle Scholar
  31. 31.
    West J, Fitzpatrick JM, Wang MY, Dawant BM, Maurer CR, Kessler RM, Maciunas RJ, Barillot C, Lemoine D, Collignon A, Maes F, Suetens P, Vandermeulen D, van den Elsen PA, Napel S, Sumanaweera TS, Harkness B, Hemler PF, Hill DLG, Hawkes DJ, Studholme C, Maintz JBA, Viergever MA, Malandain G, Pennec X, Noz ME, Maguire GQ, Pollack M, Pelizzari CA, Robb RA, Hanson D, Woods RP. Comparison and evaluation of retrospective intermodality brain image registration techniques. J Comput Assist Tomo 1997;21:554–566.Google Scholar
  32. 32.
    Gonzalez-Castillo J, Duthie KN, Saad ZS, Chu C, Bandettini PA, Luh WM (2013) Effects of image contrast on functional MRI image registration. NeuroImage 67:163–174PubMedCrossRefGoogle Scholar
  33. 33.
    Hou Z (2006) A review on MR image intensity inhomogeneity correction. Int J Biomed Imag 2006, Article ID 49515, 11 pages. doi: 10.1155/IJBI/2006/49515
  34. 34.
    Vovk U, Pernus F, Likar B (2007) A review of methods for correction of intensity in homogeneity in MRI. IEEE Trans Med Imaging 26(3):405–421PubMedCrossRefGoogle Scholar
  35. 35.
    Fox PT (1995) Spatial normalization: origins, objectives, applications, and alternatives. Hum Brain Mapp 3:161–164CrossRefGoogle Scholar
  36. 36.
    Mazziotta JC, Toga AW, Evans A, Fox P, Lancaster J (1995) A probablistic atlas of the human brain: theory and rationale for its development. NeuroImage 2:89–101PubMedCrossRefGoogle Scholar
  37. 37.
    Sotiras A, Davatzikos C, Paragios N (2013) Deformable medical image registration: a survey. IEEE Trans Med Imaging 32(7):1153–1190PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Oliveira FP, Tavares JMR (2014) Medical image registration: a review. Comput Methods Biomech Biomed Engin 17(2):73–93PubMedCrossRefGoogle Scholar
  39. 39.
    Rohlfing T (2012) Image similarity and tissue overlaps as surrogates for image registration accuracy: widely used but unreliable. IEEE Trans Med Imaging 31(2):153–163PubMedCrossRefGoogle Scholar
  40. 40.
    Auzias G, Colliot O, Glaunes JA, Perrot M, Mangin JF, Trouvé A, Baillet S (2011) Diffeomorphic brain registration under exhaustive sulcal constraints. IEEE Trans Med Imaging 30(6):1214–1227PubMedCrossRefGoogle Scholar
  41. 41.
    Du J, Younes L, Qiu A (2011) Whole brain diffeomorphic metric mapping via integration of sulcal and gyral curves, cortical surfaces, and images. NeuroImage 56(1):162–173PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Brett M, Leff AP, Rorden C, Ashburner J (2001) Spatial normalization of brain images with focal lesions using cost function masking. NeuroImage 14(2):486–500PubMedCrossRefGoogle Scholar
  43. 43.
    Shen D, Davatzikos C (2002) HAMMER: hierarchical attribute matching mechanism for elastic registration. IEEE Trans Image Process 21(11):1421–1439CrossRefGoogle Scholar
  44. 44.
    D’Agostino E, Maes F, Vandermeulen D, Suetens P (2004) Non-rigid atlas-to-image registration by minimization of class-conditional image entropy. In: Barillot C, Haynor DR, Hellier P (eds) Proc Medical Image Computing and Computer-Assisted Intervention (MICCAI), vol 3216, Lecture notes in computer science. Springer, Berlin-Heidelberg, pp 745–753Google Scholar
  45. 45.
    Sled JG, Zijdenbos AP, Evans AC (1998) A non-parametric method for automatic correction of intensity non-uniformity in MRI data. IEEE Trans Med Imaging 17(1):87–97PubMedCrossRefGoogle Scholar
  46. 46.
    Wells WM III, Grimson WEL, Kikinis R, Jolesz FA (1996) Adaptive segmentation of MRI data. IEEE Trans Med Imaging 15(4):429–442PubMedCrossRefGoogle Scholar
  47. 47.
    van Leemput K, Maes F, Vandermeulen D, Suetens P (1999) Automated model-based bias field correction of MR images of the brain. IEEE Trans Med Imaging 18(10):885–896PubMedCrossRefGoogle Scholar
  48. 48.
    Studholme C, Cardenas V, Song E, Ezekiel F, Maudsley A, Weiner M (2004) Accurate template-based correction of brain MRI intensity distortion with application to dementia and aging. IEEE Trans Med Imaging 23(1):99–110PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33:341–355PubMedCrossRefGoogle Scholar
  50. 50.
    Fischl B, Salat DH, van der Kouwe AJW, Makris N, Ségonne F, Quinn BT, Dale AM (2004) Sequence-independent segmentation of magnetic resonance images. NeuroImage 23:S69–S84PubMedCrossRefGoogle Scholar
  51. 51.
    Ashburner J, Friston KJ (2005) Unified segmentation. NeuroImage 26:839–851PubMedCrossRefGoogle Scholar
  52. 52.
    Pohl KM, Fisher J, Levitt JJ, Shenton ME, Kikinis R, Grimson WEL, Wells WM II (2005) A unifying approach to registration, segmentation, and intensity correction. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI). Springer, Berlin, pp 310–318Google Scholar
  53. 53.
    D’Agostino E, Maes F, Vandermeulen D, Suetens P (2006) A unified framework for atlas based brain image segmentation and registration. In: Pluim JPW, Likar B, Gerritsen FA (eds) Proc Third International Workshop on Biomedical Image Registration (WBIR), vol 4057, Lecture notes in computer science. Springer, Berlin-Heidelberg, pp 136–143CrossRefGoogle Scholar
  54. 54.
    Zhang H, Yushkevich PA, Gee JC (2004) Registration of diffusion tensor images. In: Proc IEEE Computer Society conference on Computer Vision and Pattern Recognition (CVPR).pp 842–847.Google Scholar
  55. 55.
    Khullar S, Michael AM, Cahill ND, Kiehl KA, Pearlson G, Baum SA, Calhoun VD (2011) ICA-fNORM: Spatial normalization of fMRI data using intrinsic group-ICA networks. Front Sys Neurosci 5(93):1–18.Google Scholar
  56. 56.
    Joshi S, Davis B, Jomier M, Gerig G (2004) Unbiased diffeomorphic atlas construction for computational anatomy. NeuroImage 23:S151–S160PubMedCrossRefGoogle Scholar
  57. 57.
    Davis B, Lorenzen P, Joshi S (2004) Large deformation minimum mean squared error template estimation for computational anatomy. In: Proc IEEE International Symposium on Biomedical Imaging (ISBI). pp 173–176Google Scholar
  58. 58.
    Lorenzen P, Davis B, Gerig G, Bullitt E, Joshi S (2004) Multi-class posterior atlas formation via unbiased Kullback-Leibler template estimation. In: Barillot C, Haynor DR, Hellier P (eds) Proc Medical Image Computing and Computer-Assisted Intervention (MICCAI), vol 3216, Lecture notes in computer science. Springer, Berlin, pp 95–102Google Scholar
  59. 59.
    Miller MI (2004) Computational anatomy: shape, growth, and atrophy comparison via diffeomorphisms. NeuroImage 23:S19–S33PubMedCrossRefGoogle Scholar
  60. 60.
    Christensen GE, Rabbitt RD, Miller MI, Joshi SC, Grenander U, Coogan TA, Van Essen DC (1995) Topological properties of smooth anatomic maps. In: Bizais Y, Barillot C, Di Paola R (eds) Proc Information Processing in Medical Imaging (IPMI). Kluwer Academic, Dordrecht, pp 101–112Google Scholar
  61. 61.
    Woods RP, Grafton ST, Holmes CJ, Cherry SR, Mazziotta JC (1998) Automated image registration: I. General methods and intrasubject, intramodality validation. J Comput Assist Tomogr 22(1):139–152PubMedCrossRefGoogle Scholar
  62. 62.
    Woods RP, Grafton ST, Watson JDG, Sicotte NL, Mazziotta JC (1998) Automated image registration: II. Intersubject validation of linear and nonlinear models. J Comput Assist Tomogr 22(1):153–165PubMedCrossRefGoogle Scholar
  63. 63.
    Christensen GE (1999) Consistent linear elastic transformations for image matching. In: Kuba A, Sámal M, Todd-Pokropek A (eds) Proc Information Processing in Medical Imaging (IPMI), vol 1613, Lecture notes in computer science. Springer, Berlin, pp 224–237CrossRefGoogle Scholar
  64. 64.
    Ashburner J, Friston KJ (1999) Nonlinear spatial normalization using basis functions. Hum Brain Mapp 7:254–266PubMedCrossRefGoogle Scholar
  65. 65.
    Bookstein FL (1989) Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans Pattern Anal Mach Intell 11(6):567–585CrossRefGoogle Scholar
  66. 66.
    Bookstein FL (1997) Quadratic variation of deformations. In: Duncan J, Gindi G (eds) Proc Information Processing in Medical Imaging (IPMI), vol 1230, Lecture notes in computer science. Springer, Berlin-Heidelberg, pp 15–28CrossRefGoogle Scholar
  67. 67.
    Bro-Nielsen M, Gramkow G (1996) Fast fluid registration of medical images. In: Höhne KH, Kikinis R (eds) Proc Visualization in Biomedical Computing (VBC), vol 1131, Lecture notes in computer science. Springer, Berlin, pp 267–276Google Scholar
  68. 68.
    Thirion JP (1995) Fast non-rigid matching of 3D medical images. Technical report no 2547. Institut National de Recherche en Informatique et en AutomatiqueGoogle Scholar
  69. 69.
    Rueckert D, Sonoda LI, Hayes C, Hill DLG, Leachand MO, Hawkes DJ (1999) Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans Image Process 18(8):712–721CrossRefGoogle Scholar
  70. 70.
    Thévenaz P, Unser M (2000) Optimization of mutual information for multiresolution image registration. IEEE Trans Image Process 9(12):2083–2099PubMedCrossRefGoogle Scholar
  71. 71.
    Christensen GE (1994) Deformable shape models for anatomy. Doctoral Thesis. Washington University, Sever Institute of TechnologyGoogle Scholar
  72. 72.
    Christensen GE, Rabbitt RD, Miller MI (1996) Deformable templates using large deformation kinematics. IEEE Trans Image Process 5:1435–1447PubMedCrossRefGoogle Scholar
  73. 73.
    Beg MF, Miller MI, Trouvé A, Younes L (2005) Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int J Comput Vis 61(2):139–157CrossRefGoogle Scholar
  74. 74.
    Avants B, Gee JC (2004) Geodesic estimation for large deformation anatomical shape averaging and interpolation. NeuroImage 23:S139–S150PubMedCrossRefGoogle Scholar
  75. 75.
    Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38(1):95–113PubMedCrossRefGoogle Scholar
  76. 76.
    Hernandez M, Bossa MN, Olmos S (2007) Registration of anatomical images using geodesic paths of diffeomorphisms parameterized with stationary vector fields. In: Proc IEEE 11th International Conference on Computer Vision (ICCV). IEEE. pp. 1–8.Google Scholar
  77. 77.
    Vercauteren T, Pennec X, Perchant A, Ayache N (2008) Symmetric log-domain diffeomorphic registration: a demons-based approach. In: Proc Medical Image Computing and Computer-Assisted Intervention (MICCAI). Springer, Berlin, pp 754–761Google Scholar
  78. 78.
    Modat M, Daga P, Cardoso MJ, Ourselin S, Ridgway GR, Ashburner J (2012) Parametric non-rigid registration using a stationary velocity field. In: Proc IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA). IEEE. pp 145–150Google Scholar
  79. 79.
    Miller MI, Trouvé A, Younes L (2006) Geodesic shooting for computational anatomy. J Math Imag Vis 24(2):209–228CrossRefGoogle Scholar
  80. 80.
    Ashburner J, Friston KJ (2011) Diffeomorphic registration using geodesic shooting and Gauss–Newton optimisation. NeuroImage 55(3):954–967PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Vialard FX, Risser L, Rueckert D, Cotter CJ (2012) Diffeomorphic 3D image registration via geodesic shooting using an efficient adjoint calculation. Int J Comput Vis 97(2):229–241CrossRefGoogle Scholar
  82. 82.
    Lester H, Arridge SR (1999) A survey of hierarchical non-linear medical image registration. Pattern Recogn 32:129–149CrossRefGoogle Scholar
  83. 83.
    Klein A, Andersson J, Ardekani BA, Ashburner J, Avants B, Chiang MC, Christensen GE, Collins DL, Gee J, Hellier P, Song JH, Jenkinson M, Lepage C, Rueckert D, Thompson P, Vercauteren T, Woods RP, Mann JJ, Parsey RV (2009) Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage 46(3):786–802PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Fissell K, Tseytlin E, Cunningham D, Carter CS, Schneider W, Cohen JD (2003) Fiswidgets: a graphical computing environment for neuroimaging analysis. Neuroinformatics 1(1):111–125PubMedCrossRefGoogle Scholar
  85. 85.
    Rex DE, Maa JQ, Toga AW (2003) The LONI pipeline processing environment. NeuroImage 19(3):1033–1048PubMedCrossRefGoogle Scholar
  86. 86.
    Zijdenbos AP, Forghani R, Evans AC (2002) Automatic ‘pipeline’ analysis of 3-D MRI data for clinical trials: application to multiple sclerosis. IEEE Trans Med Imaging 21(10):1280–1291PubMedCrossRefGoogle Scholar
  87. 87.
    Drobnjak I, Gavaghan D, Suli E, Pitt-Francis J, Jenkinson M (2006) Development of a fMRI simulator for modelling realistic rigid-body motion artifacts. Magn Reson Med 56(2):364–380PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Wellcome Trust Centre for Neuroimaging, Institute of NeurologyUniversity College LondonLondonUK

Personalised recommendations