Advertisement

High-Field fMRI

  • Alayar KangarluEmail author
Protocol
Part of the Neuromethods book series (NM, volume 119)

Abstract

Magnetic resonance imaging (MRI) allows detection of signal from constituent of biological tissues. Hydrogen (1H) is the most widely used element from which spectra and images are detected due to its abundance and high sensitivity manifested in its gyromagnetic ratio. The high contrast for soft tissue have afforded scientists invaluable information about brain structure and function. Among many parameters determining quality of MRI images, field strength is the most decisive one as it determines signal strength in fMRI images. Considering the low inherent sensitivity of fMRI, high magnetic field are the only way that activation contrast of neurofunctional studies could be increased. This is why there has been a relentless drive towards higher field strength in human imaging raising it up to 11.7 T to date. Technology of 7-T has become more widely available in scanners with fMRI capability. Development of many technologies such as multichannel RF coils, strong and fast gradients, simultaneous slice excitation, and brain-stimulation protocols have contributed to the expansion of fMRI as the method of choice for study of whole brain function. In this chapter, challenges of high-field fMRI in human studies are discussed among which signal to noise, susceptibility artifacts, multichannel RF coil designs are highlighted.

Key words

High field fMRI Neuroimaging Magnetic field High resolution 

References

  1. 1.
    Lauterbur PC (1973) Image formation by induced local interactions: example employing nuclear magnetic resonance. Nature 242:190–191CrossRefGoogle Scholar
  2. 2.
    Hoult DI, Lauterbur PC (1979) The sensitivity of the zeumatographic experiment involving human samples. J Magn Reson 34:425–433Google Scholar
  3. 3.
    Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A 89:5951–5955CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Sadek JR, Hammeke TA (2002) Functional neuroimaging in neurology and psychiatry. CNS Spectr 7:286–290, 295–299CrossRefPubMedGoogle Scholar
  5. 5.
    Yacoub E, Van De Moortele PF, Shmuel A, Uğurbil K (2005) Signal and noise characteristics of Hahn SE and GE BOLD fMRI at 7 T in humans. Neuroimage 24:738–750CrossRefPubMedGoogle Scholar
  6. 6.
    Duong TQ, Yacoub E, Adriany G, Hu X, Ugurbil K, Vaughan JT, Merkle H, Kim SG (2002) High-resolution, spin-echo BOLD, and CBF fMRI at 4 and 7 T. Magn Reson Med 48:589–593CrossRefPubMedGoogle Scholar
  7. 7.
    Pfeuffer J, Adriany G, Shmuel A, Yacoub E, Van De Moortele PF, Hu X, Ugurbil K (2002) Perfusion-based high-resolution functional imaging in the human brain at 7 Tesla. Magn Reson Med 47:903–911CrossRefPubMedGoogle Scholar
  8. 8.
    Uğurbil K, Hu X, Chen W, Zhu XH, Kim SG, Georgopoulos A (1999) Functional mapping in the human brain using high magnetic fields. Philos Trans R Soc Lond B Biol Sci 354:1195–1213CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Logothetis NK (2008) What we can do and what we cannot do with fMRI. Nature 12(453):869–878CrossRefGoogle Scholar
  10. 10.
    Goense JB, Zappe AC, Logothetis NK (2007) High-resolution fMRI of macaque V1. Magn Reson Imaging 25:740–747CrossRefPubMedGoogle Scholar
  11. 11.
    Shulman RD (2001) Functional imaging studies: linking mind and basic neuroscience. Am J Psychiatry 158:11–20CrossRefPubMedGoogle Scholar
  12. 12.
    Bloch F (1946) Nuclear induction. Phys Rev 7:460–473CrossRefGoogle Scholar
  13. 13.
    Pourcell EM, Torrey HC, Pound RV (1946) Resonance absorption by nuclear magnetic moments in a solid. Phys Rev 69:37–38CrossRefGoogle Scholar
  14. 14.
    Hoult DI, Richards RE (1976) The signal-to-noise ratio of nuclear magnetic resonance experiment. J Magn Reson 24:71–85Google Scholar
  15. 15.
    Tropp J (1989) The theory of the bird-cage resonator. J Magn Reson 82:51–62Google Scholar
  16. 16.
    Bloembergen PEM, Pound RV (1948) Relaxation effects in nuclear magnetic resonance absorption. Phys Rev 73:679–746CrossRefGoogle Scholar
  17. 17.
    Peters AM, Brookes MJ, Hoogenraad FG, Gowland PA, Francis ST, Morris PG, Bowtell R (2007) T2* measurements in human brain at 1.5, 3 and 7 T. Magn Reson Imaging 25:748–753CrossRefPubMedGoogle Scholar
  18. 18.
    Wansapura JP, Holland SK, Dunn RS, Ball WS Jr (1999) NMR relaxation times in the human brain at 3.0 Tesla. J Magn Reson Imaging 9:531–538CrossRefPubMedGoogle Scholar
  19. 19.
    Vymazal J, Righini A, Brooks RA, Canesi M, Mariani C, Leonardi M, Pezzoli G (1999) T1 and T2 in the brain of healthy subjects, patients with Parkinson disease, and patients with multiple system atrophy: relation to iron content. Radiology 211:489–495CrossRefPubMedGoogle Scholar
  20. 20.
    Liu F, Garland M, Duan Y, Stark RI, Xu D, Dong Z, Bansal R, Peterson BS, Kangarlu A (2008) Study of the development of fetal baboon brain using magnetic resonance imaging at 3 Tesla. Neuroimage 40:148–159CrossRefPubMedGoogle Scholar
  21. 21.
    Wright PJ, Mougin OE, Totman JJ, Peters AM, Brookes MJ, Coxon R, Morris PE, Clemence M, Francis ST, Bowtell RW, Gowland PA (2008) Water proton T (1) measurements in brain tissue at 7, 3, and 1.5T using IR-EPI, IR-TSE, and MPRAGE: results and optimization. MAGMA 21:121–130CrossRefPubMedGoogle Scholar
  22. 22.
    Kim SG, Ugurbil K (2003) High-resolution functional magnetic resonance imaging of the animal brain. Methods 30:28–41CrossRefPubMedGoogle Scholar
  23. 23.
    Meltzer HY, McGurk SR (1999) The effects of clozapine, risperidone, and olanzapine on cognitive function in schizophrenia. Schizophr Bull 25:233–255CrossRefPubMedGoogle Scholar
  24. 24.
    Kim SG, Fukuda M (2008) Lessons from fMRI about mapping cortical columns. Neuroscientist 14:287–299CrossRefPubMedGoogle Scholar
  25. 25.
    Yacoub E, Shmuel A, Logothetis N, Uğurbil K (2007) Robust detection of ocular dominance columns in humans using Hahn Spin Echo BOLD functional MRI at 7 Tesla. Neuroimage 37:1161–1177CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Yacoub E, Shmuel A, Pfeuffer J, Van De Moortele PF, Adriany G, Andersen P, Vaughan JT, Merkle H, Ugurbil K, Hu X (2001) Imaging brain function in humans at 7 Tesla. Magn Reson Med 45:588–594CrossRefPubMedGoogle Scholar
  27. 27.
    Mansfield P, Pykett IL, Morris PG (1978) Human whole body line-scan imaging by NMR. Br J Radiol 51:921–922CrossRefPubMedGoogle Scholar
  28. 28.
    Goense JB, Logothetis NK (2008) Neurophysiology of the BOLD fMRI signal in awake monkeys. Curr Biol 18:631–640CrossRefPubMedGoogle Scholar
  29. 29.
    Goense JB, Ku SP, Merkle H, Tolias AS, Logothetis NK (2008) fMRI of the temporal lobe of the awake monkey at 7 T. Neuroimage 39:1081–1093CrossRefPubMedGoogle Scholar
  30. 30.
    Farzaneh F, Riederer SJ, Pelc NJ (1990) Analysis of T2 limitations and off-resonance effects on spatial resolution and artifacts in echo-planar imaging. Magn Reson Med 14:123–139CrossRefPubMedGoogle Scholar
  31. 31.
    Yang QX, Smith MB, Briggs RW, Rycyna RE (1999) Microimaging at 14 Tesla using GESEPI for removal of magnetic susceptibility artifacts in T(2)(*)-weighted image contrast. J Magn Reson 141:1–6CrossRefPubMedGoogle Scholar
  32. 32.
    Yang QX, Wang J, Smith MB, Meadowcroft M, Sun X, Eslinger PJ, Golay X (2004) Reduction of magnetic field inhomogeneity artifacts in echo planar imaging with SENSE and GESEPI at high field. Magn Reson Med 52:1418–1423CrossRefPubMedGoogle Scholar
  33. 33.
    Chen NK, Wyrwicz AM (2004) Removal of EPI Nyquist ghost artifacts with two-dimensional phase correction. Magn Reson Med 51:1247–1253CrossRefPubMedGoogle Scholar
  34. 34.
    Schenck JF (1996) The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys 23:815–850CrossRefPubMedGoogle Scholar
  35. 35.
    Callaghan PT (1990) Susceptibility-limited resolution in nuclear magnetic resonance microscopy. J Magn Reson 87:304–318Google Scholar
  36. 36.
    Kangarlu A, Bourekas EC, Ray-Chaudhury A, Rammohan KW (2007) Cerebral cortical lesions in multiple sclerosis detected by MR imaging at 8 Tesla. AJNR Am J Neuroradiol 28:262–266PubMedGoogle Scholar
  37. 37.
    Filippi M, Rocca MA (2007) Conventional MRI in multiple sclerosis. J Neuroimaging 17(Suppl 1):3S–9SCrossRefPubMedGoogle Scholar
  38. 38.
    Fazekas F, Soelberg-Sorensen P, Comi G, Filippi M (2007) MRI to monitor treatment efficacy in multiple sclerosis. J Neuroimaging 17(Suppl 1):50S–55SCrossRefPubMedGoogle Scholar
  39. 39.
    Christoforidis GA, Bourekas EC, Baujan M, Abduljalil AM, Kangarlu A, Spigos DG, Chakeres DW, Robitaille PM (1999) High resolution MRI of the deep brain vascular anatomy at 8 Tesla: susceptibility-based enhancement of the venous structures. J Comput Assist Tomogr 23:857–866CrossRefPubMedGoogle Scholar
  40. 40.
    Bourekas EC, Christoforidis GA, Abduljalil AM, Kangarlu A, Chakeres DW, Spigos DG, Robitaille PM (1999) High resolution MRI of the deep gray nuclei at 8 Tesla. J Comput Assist Tomogr 23:867–874CrossRefPubMedGoogle Scholar
  41. 41.
    Davis TL, Kwong KK, Weisskopff RM, Rosen BR (1998) Calibrated functional MRI: mapping the dynamics of oxidative metabolism (hypercapniaycerebrovascular reactivity). Proc Natl Acad Sci U S A 95:1834–1839CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Yacoub E, Shmuel A, Pfeuffer J, Van De Moortele PF, Adriany G, Ugurbil K, Hu X (2001) Investigation of the initial dip in fMRI at 7 Tesla. NMR Biomed 14:408–412CrossRefPubMedGoogle Scholar
  43. 43.
    Krüger G, Glover GH (2001) Physiological noise in oxygenation-sensitive magnetic resonance imaging. Magn Reson Med 46:631–637CrossRefPubMedGoogle Scholar
  44. 44.
    Wang SJ, Luo LM, Liang XY, Gui ZG, Chen CX (2005) Estimation and removal of physiological noise from undersampled multi-slice fMRI data in image space. IEEE EMBS 27:1371–1373Google Scholar
  45. 45.
    Hyde JS, Biswal BB, Jesmanowicz A (2001) High-resolution fMRI using multislice partial k-space GR-EPI with cubic voxels. Magn Reson Med 46:114–125CrossRefPubMedGoogle Scholar
  46. 46.
    Glover GH, Krüger G (2002) Optimum voxel size in BOLD fMRI. Proc Int Soc Magn Reson Med 10:1395Google Scholar
  47. 47.
    Mountscale VB (1997) The columnar organization of the neocortex. Brain 120:701–722CrossRefGoogle Scholar
  48. 48.
    Triantafylloua C, Hogea RD, Wald LL (2006) Effect of spatial smoothing on physiological noise in high-resolution fMRI. Neuroimage 32:551–557CrossRefGoogle Scholar
  49. 49.
    Duong TQ, Kim DS, Ugurbil K, Kim SG (2001) Localized cerebral blood flow response at submillimeter columnar resolution. Proc Natl Acad Sci U S A 98:10904–10909CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Kim DS, Duong TQ, Kim SG (2000) High-resolution mapping of isoorientation columns by fMRI. Nat Neurosci 3:164–169CrossRefPubMedGoogle Scholar
  51. 51.
    Jezzard P, Clare S (1999) Sources of distortion in functional MRI data. Hum Brain Mapp 8:80–85CrossRefPubMedGoogle Scholar
  52. 52.
    Speck O, Stadler J, Zaitsev M (2008) High resolution single-shot EPI at 7T. MAGMA Magn Reson Mater in Phys Biol Med 21:73–86CrossRefGoogle Scholar
  53. 53.
    Baertlein BA, Ozbay O, Ibrahim T, Lee R, Yu Y, Kangarlu A, Robitaille PM (2000) Theoretical model for an MRI radio frequency resonator. IEEE Trans Biomed Eng 47:535–546CrossRefPubMedGoogle Scholar
  54. 54.
    Ibrahim TS, Lee R, Baertlein BA, Kangarlu A, Robitaille PL (2000) Application of finite difference time domain method for the design of birdcage RF head coils using multi-port excitations. Magn Reson Imaging 18:733–742CrossRefPubMedGoogle Scholar
  55. 55.
    Ibrahim TS, Kangarlu A, Chakeress DW (2005) Design and performance issues of RF coils utilized in ultra high field MRI: experimental and numerical evaluations. IEEE Trans Biomed Eng 52:1278–1284CrossRefPubMedGoogle Scholar
  56. 56.
    Kangarlu A, Baertlein BA, Lee R, Ibrahim T, Yang L, Abduljalil AM, Robitaille PM (1999) Dielectric resonance phenomena in ultra high field MRI. J Comput Assist Tomogr 23:821–831CrossRefPubMedGoogle Scholar
  57. 57.
    Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962CrossRefPubMedGoogle Scholar
  58. 58.
    Sodickson DK, Manning WJ (1997) Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 38:591–603CrossRefPubMedGoogle Scholar
  59. 59.
    Katscher U, Börnert P, Leussler C, van den Brink JS (2003) Transmit SENSE. Magn Reson Med 49:144–150CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Columbia University and New York State Psychiatric InstituteNew YorkUSA

Personalised recommendations