Clinical Applications of the Functional Connectome

  • Massimo FilippiEmail author
  • Maria A. Rocca
Part of the Neuromethods book series (NM, volume 119)


Network-based analysis of brain functional connections has provided a novel instrument to study the human brain in healthy and diseased individuals. Graph theory provides a powerful tool to describe quantitatively the topological organization of brain connectivity. Using such a framework, the brain can be depicted as a set of nodes connected by edges. Distinct modifications of brain network topology have been identified during development and normal aging, whereas disrupted functional connectivity has been associated to several neurological and psychiatric conditions, including multiple sclerosis, dementia, amyotrophic lateral sclerosis, and schizophrenia. Such an assessment has contributed to explain part of the clinical manifestations usually observed in these patients, including disability and cognitive impairment. Future network-based research might reveal different stages of the different diseases, subtypes for cognitive impairments, and connectivity profiles associated with different clinical outcomes.

Key words

Brain networks Structural connectivity Functional connectivity Graph theory Multiple sclerosis Dementias Psychiatric conditions 


  1. 1.
    Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198CrossRefPubMedGoogle Scholar
  2. 2.
    Filippi M, van den Heuvel MP, Fornito A et al (2013) Assessing brain system dysfunction through MRI-based connectomics. Lancet Neurol 12:1189–1199CrossRefPubMedGoogle Scholar
  3. 3.
    Fair DA, Dosenbach NU, Church JA et al (2007) Development of distinct control networks through segregation and integration. Proc Natl Acad Sci U S A 104:13507–13512CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Fair DA, Cohen AL, Dosenbach NU et al (2008) The maturing architecture of the brain’s default network. Proc Natl Acad Sci U S A 105:4028–4032CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Fair DA, Cohen AL, Power JD et al (2009) Functional brain networks develop from a “local to distributed” organization. PLoS Comput Biol 5:e1000381CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Supekar K, Musen M, Menon V (2009) Development of large-scale functional brain networks in children. PLoS Biol 7:e1000157CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hwang K, Hallquist MN, Luna B (2013) The development of hub architecture in the human functional brain network. Cereb Cortex 23:2380–2393CrossRefPubMedGoogle Scholar
  8. 8.
    Dosenbach NU, Nardos B, Cohen AL et al (2010) Prediction of individual brain maturity using fMRI. Science 329:1358–1361CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wu K, Taki Y, Sato K et al (2013) Topological organization of functional brain networks in healthy children: differences in relation to age, sex, and intelligence. PLoS One 8:e55347CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    van den Heuvel MP, van Soelen IL, Stam CJ, Kahn RS, Boomsma DI, Hulshoff Pol HE (2013) Genetic control of functional brain network efficiency in children. Eur Neuropsychopharmacol 23:19–23CrossRefPubMedGoogle Scholar
  11. 11.
    Fransson P, Aden U, Blennow M, Lagercrantz H (2011) The functional architecture of the infant brain as revealed by resting-state fMRI. Cereb Cortex 21:145–154CrossRefPubMedGoogle Scholar
  12. 12.
    Gao W, Gilmore JH, Giovanello KS et al (2011) Temporal and spatial evolution of brain network topology during the first two years of life. PLoS One 6:e25278CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Achard S, Bullmore E (2007) Efficiency and cost of economical brain functional networks. PLoS Comput Biol 3:e17CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Tomasi D, Volkow ND (2012) Aging and functional brain networks. Mol Psychiatry 17(471):549–458CrossRefGoogle Scholar
  15. 15.
    Meier TB, Desphande AS, Vergun S et al (2012) Support vector machine classification and characterization of age-related reorganization of functional brain networks. Neuroimage 60:601–613CrossRefPubMedGoogle Scholar
  16. 16.
    Rocca M, Valsasina P, Martinelli V et al (2012) Large-scle neuronal network dysfunction in relapsing-remitting multiple sclerosis. Neurology 79:1449–1457CrossRefPubMedGoogle Scholar
  17. 17.
    Schoonheim MM, Hulst HE, Landi D et al (2012) Gender-related differences in functional connectivity in multiple sclerosis. Mult Scler 18:164–173CrossRefPubMedGoogle Scholar
  18. 18.
    Rocca MA, Valsasina P, Meani A, Falini A, Comi G, Filippi M (2016) Impaired functional integration in multiple sclerosis: a graph theory study. Brain Struct Funct 221:115–131CrossRefPubMedGoogle Scholar
  19. 19.
    Gamboa OL, Tagliazucchi E, von Wegner F et al (2014) Working memory performance of early MS patients correlates inversely with modularity increases in resting state functional connectivity networks. Neuroimage 94:385–395CrossRefPubMedGoogle Scholar
  20. 20.
    Richiardi J, Gschwind M, Simioni S et al (2012) Classifying minimally disabled multiple sclerosis patients from resting state functional connectivity. Neuroimage 62:2021–2033CrossRefPubMedGoogle Scholar
  21. 21.
    Buckner RL, Sepulcre J, Talukdar T et al (2009) Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J Neurosci 29:1860–1873CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    He Y, Chen Z, Evans A (2008) Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer’s disease. J Neurosci 28:4756–4766CrossRefPubMedGoogle Scholar
  23. 23.
    Sanz-Arigita EJ, Schoonheim MM, Damoiseaux JS et al (2010) Loss of ‘small-world’ networks in Alzheimer’s disease: graph analysis of FMRI resting-state functional connectivity. PLoS One 5:e13788CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Supekar K, Menon V, Rubin D, Musen M, Greicius MD (2008) Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Comput Biol 4:e1000100CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Tijms BM, Wink AM, de Haan W et al (2013) Alzheimer’s disease: connecting findings from graph theoretical studies of brain networks. Neurobiol Aging 34:2023–2036CrossRefPubMedGoogle Scholar
  26. 26.
    Zhao X, Liu Y, Wang X et al (2012) Disrupted small-world brain networks in moderate Alzheimer’s disease: a resting-state FMRI study. PLoS One 7:e33540CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Agosta F, Sala S, Valsasina P et al (2013) Brain network connectivity assessed using graph theory in frontotemporal dementia. Neurology 9:134–143CrossRefGoogle Scholar
  28. 28.
    Verstraete E, van den Heuvel MP, Veldink JH et al (2010) Motor network degeneration in amyotrophic lateral sclerosis: a structural and functional connectivity study. PLoS One 5:e13664CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13:336–349PubMedGoogle Scholar
  30. 30.
    van den Heuvel MP, Mandl RC, Stam CJ, Kahn RS, Hulshoff Pol HE (2010) Aberrant frontal and temporal complex network structure in schizophrenia: a graph theoretical analysis. J Neurosci 30:15915–15926CrossRefPubMedGoogle Scholar
  31. 31.
    Lynall ME, Bassett DS, Kerwin R et al (2010) Functional connectivity and brain networks in schizophrenia. J Neurosci 30:9477–9487CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Bassett DS, Nelson BG, Mueller BA, Camchong J, Lim KO (2012) Altered resting state complexity in schizophrenia. Neuroimage 59:2196–2207CrossRefPubMedGoogle Scholar
  33. 33.
    Lo CY, Su TW, Huang CC et al (2015) Randomization and resilience of brain functional networks as systems-level endophenotypes of schizophrenia. Proc Natl Acad Sci U S A 112:9123–9128CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Alexander-Bloch AF, Gogtay N, Meunier D et al (2010) Disrupted modularity and local connectivity of brain functional networks in childhood-onset schizophrenia. Front Syst Neurosci 4:147CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Yu Q, Erhardt EB, Sui J et al (2015) Assessing dynamic brain graphs of time-varying connectivity in fMRI data: application to healthy controls and patients with schizophrenia. Neuroimage 107:345–355CrossRefPubMedGoogle Scholar
  36. 36.
    Rubinov M, Bullmore E (2013) Schizophrenia and abnormal brain network hubs. Dialogues Clin Neurosci 15:339–349PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Neuroimaging Research Unit, Institute of Experimental Neurology, Division of NeuroscienceSan Raffaele Scientific Institute, Vita-Salute San Raffaele UniversityMilanItaly
  2. 2.Department of Neurology, Division of NeuroscienceSan Raffaele Scientific Institute, Vita-Salute San Raffaele UniversityMilanItaly

Personalised recommendations