Skip to main content

Selection of Optimal Pulse Sequences for fMRI

  • Protocol
  • First Online:
fMRI Techniques and Protocols

Part of the book series: Neuromethods ((NM,volume 119))

  • 2567 Accesses

Abstract

In this chapter, we discuss technical considerations regarding pulse sequence selection and sequence parameter selection that can affect fMRI studies. The major focus is on optimizing MRI data acquisitions for blood oxygen level-dependent signal detection. Specific recommendations are made for generic 1.5, 3, and 7 T MRI scanners.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The flip angle can also affect the contrast of the generated images, but for simplicity, we focus here on the more intuitive parameters TE and TR.

  2. 2.

    up to the limits of the gradient hardware and not without various drawbacks.

  3. 3.

    Eddy currents are currents induced in gradient coils and other scanner components from the rapidly changing fields generated by the gradient coils.

  4. 4.

    In addition, a mixed mode EPI has been used in the literature known as ASE, or asymmetric spin echo. This is a SE EPI with the acquisition window shifted to be centered on a time point early on in the SE evolution. The result is an acquisition that has, in a sense, adjustable sensitivity to capillary and venous signal.

  5. 5.

    There are, of course, other parameters that can affect this, such as gradient slew rate, partial fourier and/or field-of-view acquisition, etc.

  6. 6.

    More accurately, retrospective motion correction techniques will be more effective.

References

  1. Belliveau JW, Kennedy DN Jr, McKinstry RC et al (1991) Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254:716–719

    Article  CAS  PubMed  Google Scholar 

  2. Ogawa S, Lee TM, Nayak AS, Glynn P (1990) Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 14:68–78

    Article  CAS  PubMed  Google Scholar 

  3. Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS (1992) Time course EPI of human brain function during task activation. Magn Reson Med 25:390–397

    Article  CAS  PubMed  Google Scholar 

  4. Kwong KK, Belliveau JW, Chesler DA et al (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 89:5675–5679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ogawa S, Tank DW, Menon R et al (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A 89:5951–5955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Frahm J, Bruhn H, Merboldt KD, Hanicke W (1992) Dynamic MR imaging of human brain oxygenation during rest and photic stimulation. J Magn Reson Imaging 2:501–505

    Article  CAS  PubMed  Google Scholar 

  7. Weisskoff RM, Davis TL (1992) Correcting gross distortion on echo planar images, Society of Magnetic Resonance in Medicine 11th annual meeting, Berlin

    Google Scholar 

  8. Foerster BU, Tomasi D, Caparelli EC (2005) Magnetic field shift due to mechanical vibration in functional magnetic resonance imaging. Magn Reson Med 54:1261–1267

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ahn CB, Kim JH, Cho ZH (1986) High-speed spiral-scan echo planar NMR imaging-I. IEEE Trans Med Imaging 5:2–7

    Article  CAS  PubMed  Google Scholar 

  10. Bruder H, Fischer H, Reinfelder HE, Schmitt F (1992) Image reconstruction for echo planar imaging with nonequidistant k-space sampling. Magn Reson Med 23:311–323

    Article  CAS  PubMed  Google Scholar 

  11. Pipe JG, Duerk JL (1995) Analytical resolution and noise characteristics of linearly reconstructed magnetic resonance data with arbitrary k-space sampling. Magn Reson Med 34:170–178

    Article  CAS  PubMed  Google Scholar 

  12. Bornert P, Schomberg H, Aldefeld B, Groen J (1999) Improvements in spiral MR imaging. Magma 9:29–41

    Article  CAS  PubMed  Google Scholar 

  13. Glover GH, Law CS (2001) Spiral-in/out BOLD fMRI for increased SNR and reduced susceptibility artifacts. Magn Reson Med 46:515–522

    Article  CAS  PubMed  Google Scholar 

  14. Preston AR, Thomason ME, Ochsner KN, Cooper JC, Glover GH (2004) Comparison of spiral-in/out and spiral-out BOLD fMRI at 1.5 and 3 T. Neuroimage 21:291–301

    Article  PubMed  Google Scholar 

  15. Sodickson DK, Manning WJ (1997) Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 38:591–603

    Article  CAS  PubMed  Google Scholar 

  16. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962

    Article  CAS  PubMed  Google Scholar 

  17. Griswold MA, Jakob PM, Heidemann RM et al (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210

    Article  PubMed  Google Scholar 

  18. Heidemann RM, Griswold MA, Kiefer B et al (2003) Resolution enhancement in lung 1H imaging using parallel imaging methods. Magn Reson Med 49:391–394

    Article  CAS  PubMed  Google Scholar 

  19. Ohliger MA, Grant AK, Sodickson DK (2003) Ultimate intrinsic signal-to-noise ratio for parallel MRI: electromagnetic field considerations. Magn Reson Med 50:1018–1030

    Article  PubMed  Google Scholar 

  20. Wiesinger F, Boesiger P, Pruessmann KP (2004) Electrodynamics and ultimate SNR in parallel MR imaging. Magn Reson Med 52:376–390

    Article  PubMed  Google Scholar 

  21. Blaimer M, Breuer F, Mueller M, Heidemann RM, Griswold MA, Jakob PM (2004) SMASH, SENSE, PILS, GRAPPA: how to choose the optimal method. Top Magn Reson Imaging 15:223–236

    Article  PubMed  Google Scholar 

  22. Ohliger MA, Sodickson DK (2006) An introduction to coil array design for parallel MRI. NMR Biomed 19:300–315

    Article  PubMed  Google Scholar 

  23. Pruessmann KP, Weiger M, Bornert P, Boesiger P (2001) Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med 46:638–651

    Article  CAS  PubMed  Google Scholar 

  24. Weiger M, Pruessmann KP, Osterbauer R, Bornert P, Boesiger P, Jezzard P (2002) Sensitivity-encoded single-shot spiral imaging for reduced susceptibility artifacts in BOLD fMRI. Magn Reson Med 48:860–866

    Article  PubMed  Google Scholar 

  25. Heidemann RM, Griswold MA, Seiberlich N et al (2006) Direct parallel image reconstructions for spiral trajectories using GRAPPA. Magn Reson Med 56:317–326

    Article  PubMed  Google Scholar 

  26. Griswold MA, Kannengiesser S, Heidemann RM, Wang J, Jakob PM (2004) Field-of-view limitations in parallel imaging. Magn Reson Med 52:1118–1126

    Article  PubMed  Google Scholar 

  27. Griswold MA, Breuer F, Blaimer M et al (2006) Autocalibrated coil sensitivity estimation for parallel imaging. NMR Biomed 19:316–324

    Article  PubMed  Google Scholar 

  28. Sodickson DK (2000) Tailored SMASH image reconstructions for robust in vivo parallel MR imaging. Magn Reson Med 44:243–251

    Article  CAS  PubMed  Google Scholar 

  29. Sanchez-Gonzalez J, Tsao J, Dydak U, Desco M, Boesiger P, Paul PK (2006) Minimum-norm reconstruction for sensitivity-encoded magnetic resonance spectroscopic imaging. Magn Reson Med 55:287–295

    Article  PubMed  Google Scholar 

  30. Lin FH, Kwong KK, Belliveau JW, Wald LL (2004) Parallel imaging reconstruction using automatic regularization. Magn Reson Med 51:559–567

    Article  PubMed  Google Scholar 

  31. Block KT, Frahm J (2005) Spiral imaging: a critical appraisal. J Magn Reson Imaging 21:657–668

    Article  PubMed  Google Scholar 

  32. Tsao J, Boesiger P, Pruessmann KP (2003) k-t BLAST and k-t SENSE: dynamic MRI with high frame rate exploiting spatiotemporal correlations. Magn Reson Med 50:1031–1042

    Article  PubMed  Google Scholar 

  33. Huang F, Akao J, Vijayakumar S, Duensing GR, Limkeman M (2005) k-t GRAPPA: a k-space implementation for dynamic MRI with high reduction factor. Magn Reson Med 54:1172–1184

    Article  PubMed  Google Scholar 

  34. Cuppen JJ, Groen JP, Konijn J (1986) Magnetic resonance fast Fourier imaging. Med Phys 13:248–253

    Article  CAS  PubMed  Google Scholar 

  35. Noll DC, Nishimura DG, Macovski A (1991) Homodyne detection in magnetic resonance imaging. IEEE Trans Med Imaging 10:154–163

    Article  CAS  PubMed  Google Scholar 

  36. Jesmanowicz A, Bandettini PA, Hyde JS (1998) Single-shot half k-space high-resolution gradient-recalled EPI for fMRI at 3 Tesla. Magn Reson Med 40:754–762

    Article  CAS  PubMed  Google Scholar 

  37. Hyde JS, Biswal BB, Jesmanowicz A (2001) High-resolution fMRI using multislice partial k-space GR-EPI with cubic voxels. Magn Reson Med 46:114–125

    Article  CAS  PubMed  Google Scholar 

  38. Moeller S, Yacoub E, Olman CA et al (2010) Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI. Magn Reson Med 63:1144–1153

    Article  PubMed  PubMed Central  Google Scholar 

  39. Setsompop K, Gagoski BA, Polimeni JR, Witzel T, Wedeen VJ, Wald LL (2012) Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn Reson Med 67:1210–1224

    Google Scholar 

  40. Cauley SF, Polimeni JR, Bhat H, Wald LL, (2014) Setsompop K Interslice leakage artifact reduction technique for simultaneous multislice acquisitions. Magn Reson Med 72:93–102

    Google Scholar 

  41. Xu J, Moeller S, Auerbach EJ, et al. (2013) Evaluation of slice accelerations using multiband echo planar imaging at 3 T. Neuroimage 83:991–1001

    Google Scholar 

  42. Ugurbil K, Xu J, Auerbach EJ, et al. (2013) Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project. Neuroimage 80:80–104

    Google Scholar 

  43. Jo HJ, Saad ZS, Simmons WK, Milbury LA, Cox RW (2010) Mapping sources of correlation in resting state FMRI, with artifact detection and removal. Neuroimage 52: 571–582

    Google Scholar 

  44. Meyer CH, Pauly JM, Macovski A, Nishimura DG (1990) Simultaneous spatial and spectral selective excitation. Magn Reson Med 15:287–304

    Article  CAS  PubMed  Google Scholar 

  45. Zhou XJ, Du YP, Bernstein MA, Reynolds HG, Maier JK, Polzin JA (1998) Concomitant magnetic-field-induced artifacts in axial echo planar imaging. Magn Reson Med 39:596–605

    Article  CAS  PubMed  Google Scholar 

  46. Reeder SB, Atalar E, Faranesh AZ, McVeigh ER (1999) Referenceless interleaved echo-planar imaging. Magn Reson Med 41:87–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Duyn JH, Yang Y, Frank JA, van der Veen JW (1998) Simple correction method for k-space trajectory deviations in MRI. J Magn Reson 132:150–153

    Article  CAS  PubMed  Google Scholar 

  48. Yudilevich E, Stark H (1987) Spiral sampling in magnetic resonance imaging-the effect of inhomogeneities. IEEE Trans Med Imaging 6:337–345

    Article  CAS  PubMed  Google Scholar 

  49. Jezzard P, Balaban RS (1995) Correction for geometric distortion in echo planar images from B0 field variations. Magn Reson Med 34:65–73

    Article  CAS  PubMed  Google Scholar 

  50. Blamire AM, Rothman DL, Nixon T (1996) Dynamic shim updating: a new approach towards optimized whole brain shimming. Magn Reson Med 36:159–165

    Article  CAS  PubMed  Google Scholar 

  51. Wilson JL, Jenkinson M, de Araujo I, Kringelbach ML, Rolls ET, Jezzard P (2002) Fast, fully automated global and local magnetic field optimization for fMRI of the human brain. Neuroimage 17:967–976

    Article  PubMed  Google Scholar 

  52. Ward HA, Riederer SJ, Jack CR Jr (2002) Real-time autoshimming for echo planar timecourse imaging. Magn Reson Med 48:771–780

    Article  PubMed  Google Scholar 

  53. Yang QX, Williams GD, Demeure RJ, Mosher TJ, Smith MB (1998) Removal of local field gradient artifacts in T 2*-weighted images at high fields by gradient-echo slice excitation profile imaging. Magn Reson Med 39:402–409

    Article  CAS  PubMed  Google Scholar 

  54. Constable RT, Spencer DD (1999) Composite image formation in z-shimmed functional MR imaging. Magn Reson Med 42:110–117

    Article  CAS  PubMed  Google Scholar 

  55. Chen N, Wyrwicz AM (1999) Removal of intravoxel dephasing artifact in gradient-echo images using a field-map based RF refocusing technique. Magn Reson Med 42:807–812

    Article  CAS  PubMed  Google Scholar 

  56. Oesterle C, Markl M, Strecker R, Kraemer FM, Hennig J (1999) Spiral reconstruction by regridding to a large rectilinear matrix: a practical solution for routine systems. J Magn Reson Imaging 10:84–92

    Article  CAS  PubMed  Google Scholar 

  57. Moriguchi H, Duerk JL (2001) Modified block uniform resampling (BURS) algorithm using truncated singular value decomposition: fast accurate gridding with noise and artifact reduction. Magn Reson Med 46:1189–1201

    Article  CAS  PubMed  Google Scholar 

  58. Nehrke K, Bornert P (2005) Prospective correction of affine motion for arbitrary MR sequences on a clinical scanner. Magn Reson Med 54:1130–1138

    Article  PubMed  Google Scholar 

  59. Hajnal JV, Myers R, Oatridge A, Schwieso JE, Young IR, Bydder GM (1994) Artifacts due to stimulus correlated motion in functional imaging of the brain. Magn Reson Med 31:283–291

    Article  CAS  PubMed  Google Scholar 

  60. Friston KJ, Williams S, Howard R, Frackowiak RS, Turner R (1996) Movement-related effects in fMRI time-series. Magn Reson Med 35:346–355

    Article  CAS  PubMed  Google Scholar 

  61. Bullmore ET, Brammer MJ, Rabe-Hesketh S et al (1999) Methods for diagnosis and treatment of stimulus-correlated motion in generic brain activation studies using fMRI. Hum Brain Mapp 7:38–48

    Article  CAS  PubMed  Google Scholar 

  62. Jezzard P, LeBihan D, Cuenod D, Pannier L, Prinster A, Turner R (1992) An investigation of the contribution of physiological noise in human functional MRI studies at 1.5 Tesla and 4 Tesla, Society of Magnetic Resonance in Medicine 12th annual meeting, New York

    Google Scholar 

  63. Lowe MJ, Mock BJ, Sorenson JA (1998) Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage 7:119–132

    Article  CAS  PubMed  Google Scholar 

  64. Triantafyllou C, Hoge RD, Krueger G et al (2005) Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters. Neuroimage 26:243–250

    Article  CAS  PubMed  Google Scholar 

  65. Friedman L, Glover GH (2006) Report on a multicenter fMRI quality assurance protocol. J Magn Reson Imaging 23:827–839

    Article  PubMed  Google Scholar 

  66. Beall EB, Lowe MJ (2014) SimPACE: generating simulated motion corrupted BOLD data with synthetic-navigated acquisition for the development and evaluation of SLOMOCO: a new, highly effective slicewise motion correction. Neuroimage 101:21–34

    Article  PubMed  PubMed Central  Google Scholar 

  67. Beall EB, Lowe MJ (2007) Isolating physiologic noise sources with independently determined spatial measures. Neuroimage 37:1286–1300

    Article  PubMed  Google Scholar 

  68. Fu ZW, Wang Y, Grimm RC et al (1995) Orbital navigator echoes for motion measurements in magnetic resonance imaging. Magn Reson Med 34:746–753

    Article  CAS  PubMed  Google Scholar 

  69. Lee CC, Jack CR Jr, Grimm RC et al (1996) Real-time adaptive motion correction in functional MRI. Magn Reson Med 36:436–444

    Article  CAS  PubMed  Google Scholar 

  70. Thesen S, Heid O, Mueller E, Schad LR (2000) Prospective acquisition correction for head motion with image-based tracking for real-time fMRI. Magn Reson Med 44:457–465

    Article  CAS  PubMed  Google Scholar 

  71. Zhao X, Bodurka J, Jesmanowicz A, Li SJ (2000) B(0)-fluctuation-induced temporal variation in EPI image series due to the disturbance of steady-state free precession. Magn Reson Med 44:758–765

    Article  CAS  PubMed  Google Scholar 

  72. Raj D, Anderson AW, Gore JC (2001) Respiratory effects in human functional magnetic resonance imaging due to bulk susceptibility changes. Phys Med Biol 46:3331–3340

    Article  CAS  PubMed  Google Scholar 

  73. Dagli MS, Ingeholm JE, Haxby JV (1999) Localization of cardiac-induced signal change in fMRI. Neuroimage 9:407–415

    Article  CAS  PubMed  Google Scholar 

  74. Bhattacharyya PK, Lowe MJ (2004) Cardiac-induced physiologic noise in tissue is a direct observation of cardiac-induced fluctuations. Magn Reson Imaging 22:9–13

    Article  PubMed  Google Scholar 

  75. Guimaraes AR, Melcher JR, Talavage TM et al (1998) Imaging subcortical auditory activity in humans. Hum Brain Mapp 6:33–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hu X, Le TH, Parrish T, Erhard P (1995) Retrospective estimation and correction of physiological fluctuation in functional MRI. Magn Reson Med 34:201–212

    Article  CAS  PubMed  Google Scholar 

  77. Glover GH, Li TQ, Ress D (2000) Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn Reson Med 44:162–167

    Article  CAS  PubMed  Google Scholar 

  78. Stefanovic B, Pike GB (2004) Human whole-blood relaxometry at 1.5 T: assessment of diffusion and exchange models. Magn Reson Med 52:716–723

    Article  PubMed  Google Scholar 

  79. Friston KJ, Holmes AP, Worsley KJ, Poline J-B, Frith CD, Frackowiak R (1995) Statistical parametric mapping in functional imaging: a general linear approach. Hum Brain Mapp 2:189–210

    Article  Google Scholar 

  80. Josephs O, Turner R, Friston KJ (1997) Event-related fMRI. Hum Brain Mapp 5:243–248

    Article  CAS  PubMed  Google Scholar 

  81. Bandettini PA, Jesmanowicz A, Wong EC, Hyde JS (1993) Processing strategies for time-course data sets in functional MRI of the human brain. Magn Reson Med 30:161–173

    Article  CAS  PubMed  Google Scholar 

  82. Miezin FM, Maccotta L, Ollinger JM, Petersen SE, Buckner RL (2000) Characterizing the hemodynamic response: effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing. Neuroimage 11:735–759

    Article  CAS  PubMed  Google Scholar 

  83. Lowe MJ, Sorenson JA (1997) Spatially filtering functional magnetic resonance imaging data. Magn Reson Med 37:723–729

    Article  CAS  PubMed  Google Scholar 

  84. Triantafyllou C, Hoge RD, Wald LL (2006) Effect of spatial smoothing on physiological noise in high-resolution fMRI. Neuroimage 32:551–557

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark J. Lowe Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lowe, M.J., Beall, E.B. (2016). Selection of Optimal Pulse Sequences for fMRI. In: Filippi, M. (eds) fMRI Techniques and Protocols. Neuromethods, vol 119. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-5611-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-5611-1_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-5609-8

  • Online ISBN: 978-1-4939-5611-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics