Skip to main content

Functional MRI of the Spinal Cord

  • Protocol
  • First Online:
fMRI Techniques and Protocols

Part of the book series: Neuromethods ((NM,volume 119))

  • 2396 Accesses

Abstract

Evidence to date shows that fMRI of the spinal cord (spinal fMRI) can reliably demonstrate regions involved with sensation of tactile, thermal, and painful stimuli, and with motor tasks. Spinal fMRI acquisition methods based on BOLD contrast have been recently optimized. Results have demonstrated the ability of spinal fMRI to provide objective assessments of sensory and motor function, and discriminate responses when modulated by cognitive/emotional factors. Studies have been also carried out with patients with cord trauma, and in people with multiple sclerosis (MS). The availability of essentially automated analysis, large extent coverage of the spinal cord, and spatial normalization to permit comparisons with reference results and labeling of active regions are being implemented with the aim to translate the method into a practical clinical assessment tool.

The research completed so far indicates that spinal fMRI will be able to demonstrate where the neuronal activity is altered at any level (cervical, thoracic, lumbar, or sacral), whether or not information is reaching the cord from the periphery, and whether or not there is descending modulation of the response. It may also be able to provide an objective measure of pain, and to demonstrate the extent and mechanism of changes over time after an injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Figley CR, Stroman PW (2007) Investigation of human cervical and upper thoracic spinal cord motion: implications for imaging spinal cord structure and function. Magn Reson Med 58(1):185–189

    Article  CAS  PubMed  Google Scholar 

  2. Figley CR, Yau D, Stroman PW (2008) Attenuation of lower-thoracic, lumbar, and sacral spinal cord motion: implications for imaging human spinal cord structure and function. AJNR Am J Neuroradiol 29(8):1450–1454

    Article  CAS  PubMed  Google Scholar 

  3. Yoshizawa T, Nose T, Moore GJ, Sillerud LO (1996) Functional magnetic resonance imaging of motor activation in the human cervical spinal cord. Neuroimage 4(3 Pt 1):174–182

    Article  CAS  PubMed  Google Scholar 

  4. Menon RS, Ogawa S, Kim SG, Ellermann JM, Merkle H, Tank DW, Ugurbil K (1992) Functional brain mapping using magnetic resonance imaging. Signal changes accompanying visual stimulation. Invest Radiol 27(Suppl 2):S47–S53

    Article  PubMed  Google Scholar 

  5. Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A 89(13):5951–5955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stroman PW, Nance PW, Ryner LN (1999) BOLD MRI of the human cervical spinal cord at 3 tesla. Magn Reson Med 42(3):571–576

    Article  CAS  PubMed  Google Scholar 

  7. Madi S, Flanders AE, Vinitski S, Herbison GJ, Nissanov J (2001) Functional MR imaging of the human cervical spinal cord. AJNR Am J Neuroradiol 22(9):1768–1774

    CAS  PubMed  Google Scholar 

  8. Backes WH, Mess WH, Wilmink JT (2001) Functional MR imaging of the cervical spinal cord by use of median nerve stimulation and fist clenching. AJNR Am J Neuroradiol 22(10):1854–1859

    CAS  PubMed  Google Scholar 

  9. Stroman PW, Ryner LN (2001) Functional MRI of motor and sensory activation in the human spinal cord. Magn Reson Imaging 19(1):27–32

    Article  CAS  PubMed  Google Scholar 

  10. Stroman PW, Krause V, Malisza KL, Frankenstein UN, Tomanek B (2001) Characterization of contrast changes in functional MRI of the human spinal cord at 1.5 T. Magn Reson Imaging 19(6):833–838

    Article  CAS  PubMed  Google Scholar 

  11. Bandettini PA, Wong EC, Jesmanowicz A, Hinks RS, Hyde JS (1994) Spin-echo and gradient-echo EPI of human brain activation using BOLD contrast: a comparative study at 1.5 T. NMR Biomed 7(1–2):12–20

    Article  CAS  PubMed  Google Scholar 

  12. Figley CR, Leitch JK, Stroman PW (2010) In contrast to BOLD: signal enhancement by extravascular water protons as an alternative mechanism of endogenous fMRI signal change. Magn Reson Imaging 28(8):1234–1243

    Article  CAS  PubMed  Google Scholar 

  13. Figley CR, Stroman PW (2012) Measurement and characterization of the human spinal cord SEEP response using event-related spinal fMRI. Magn Reson Imaging 30(4):471–484

    Article  PubMed  Google Scholar 

  14. Stroman PW, Krause V, Malisza KL, Frankenstein UN, Tomanek B (2002) Extravascular proton-density changes as a non-BOLD component of contrast in fMRI of the human spinal cord. Magn Reson Med 48(1):122–127

    Article  CAS  PubMed  Google Scholar 

  15. Stroman PW, Lee AS, Pitchers KK, Andrew RD (2008) Magnetic resonance imaging of neuronal and glial swelling as an indicator of function in cerebral tissue slices. Magn Reson Med 59(4):700–706

    Article  CAS  PubMed  Google Scholar 

  16. Stroman PW, Malisza KL, Onu M (2003) Functional magnetic resonance imaging at 0.2 Tesla. Neuroimage 20(2):1210–1214

    Article  CAS  PubMed  Google Scholar 

  17. Bosma RL, Stroman PW (2014) Assessment of data acquisition parameters, and analysis techniques for noise reduction in spinal cord fMRI data. Magn Reson Imaging 32(5):473–481

    Article  CAS  PubMed  Google Scholar 

  18. Komisaruk BR, Mosier KM, Liu WC, Criminale C, Zaborszky L, Whipple B, Kalnin A (2002) Functional localization of brainstem and cervical spinal cord nuclei in humans with fMRI. AJNR Am J Neuroradiol 23(4):609–617

    PubMed  Google Scholar 

  19. Cohen-Adad J, Gauthier CJ, Brooks JC, Slessarev M, Han J, Fisher JA, Rossignol S, Hoge RD (2010) BOLD signal responses to controlled hypercapnia in human spinal cord. Neuroimage 50(3):1074–1084

    Article  CAS  PubMed  Google Scholar 

  20. Maieron M, Iannetti GD, Bodurka J, Tracey I, Bandettini PA, Porro CA (2007) Functional responses in the human spinal cord during willed motor actions: evidence for side- and rate-dependent activity. J Neurosci 27(15):4182–4190

    Article  CAS  PubMed  Google Scholar 

  21. Summers PE, Ferraro D, Duzzi D, Lui F, Iannetti GD, Porro CA (2010) A quantitative comparison of BOLD fMRI responses to noxious and innocuous stimuli in the human spinal cord. Neuroimage 50(4):1408–1415

    Article  PubMed  Google Scholar 

  22. Nash P, Wiley K, Brown J, Shinaman R, Ludlow D, Sawyer AM, Glover G, Mackey S (2013) Functional magnetic resonance imaging identifies somatotopic organization of nociception in the human spinal cord. Pain 154(6):776–781

    Article  PubMed  Google Scholar 

  23. Eippert F, Finsterbusch J, Bingel U, Buchel C (2009) Direct evidence for spinal cord involvement in placebo analgesia. Science 326(5951):404

    Article  CAS  PubMed  Google Scholar 

  24. Sprenger C, Eippert F, Finsterbusch J, Bingel U, Rose M, Buchel C (2012) Attention modulates spinal cord responses to pain. Curr Biol 22(11):1019–1022

    Article  CAS  PubMed  Google Scholar 

  25. Geuter S, Buchel C (2013) Facilitation of pain in the human spinal cord by nocebo treatment. J Neurosci 33(34):13784–13790

    Article  CAS  PubMed  Google Scholar 

  26. van de Sand MF, Sprenger C, Buchel C (2015) BOLD responses to itch in the human spinal cord. Neuroimage 108:138–143

    Article  PubMed  Google Scholar 

  27. Figley CR, Stroman PW (2011) The role(s) of astrocytes and astrocyte activity in neurometabolism, neurovascular coupling, and the production of functional neuroimaging signals. Eur J Neurosci 33(4):577–588

    Article  PubMed  Google Scholar 

  28. Stroman PW, Krause V, Frankenstein UN, Malisza KL, Tomanek B (2001) Spin-echo versus gradient-echo fMRI with short echo times. Magn Reson Imaging 19(6):827–831

    Article  CAS  PubMed  Google Scholar 

  29. Stroman PW, Tomanek B, Krause V, Frankenstein UN, Malisza KL (2003) Functional magnetic resonance imaging of the human brain based on signal enhancement by extravascular protons (SEEP fMRI). Magn Reson Med 49(3):433–439

    Article  CAS  PubMed  Google Scholar 

  30. Stroman PW, Kornelsen J, Lawrence J, Malisza KL (2005) Functional magnetic resonance imaging based on SEEP contrast: response function and anatomical specificity. Magn Reson Imaging 23(8):843–850

    Article  PubMed  Google Scholar 

  31. Cahill CM, Stroman PW (2011) Mapping of neural activity produced by thermal pain in the healthy human spinal cord and brain stem: a functional magnetic resonance imaging study. Magn Reson Imaging 29(3):342–352

    Article  PubMed  Google Scholar 

  32. Ghazni NF, Cahill CM, Stroman PW (2010) Tactile sensory and pain networks in the human spinal cord and brain stem mapped by means of functional MR imaging. AJNR Am J Neuroradiol 31(4):661–667

    Article  CAS  PubMed  Google Scholar 

  33. Kozyrev N, Figley CR, Alexander MS, Richards JS, Bosma RL, Stroman PW (2012) Neural correlates of sexual arousal in the spinal cords of able-bodied men: a spinal fMRI investigation. J Sex Marital Ther 38(5):418–435

    Article  PubMed  Google Scholar 

  34. Lawrence JM, Kornelsen J, Stroman PW (2011) Noninvasive observation of cervical spinal cord activity in children by functional MRI during cold thermal stimulation. Magn Reson Imaging 29(6):813–818

    Article  PubMed  Google Scholar 

  35. Rempe T, Wolff S, Riedel C, Baron R, Stroman PW, Jansen O, Gierthmuhlen J (2014) Spinal fMRI reveals decreased descending inhibition during secondary mechanical hyperalgesia. PLoS One 9(11):e112325

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rempe T, Wolff S, Riedel C, Baron R, Stroman PW, Jansen O, Gierthmuhlen J (2014) Spinal and supraspinal processing of thermal stimuli: an fMRI study. J Magn Reson Imaging 41(4):1046–1055

    Article  PubMed  Google Scholar 

  37. Stroman PW (2009) Spinal fMRI investigation of human spinal cord function over a range of innocuous thermal sensory stimuli and study-related emotional influences. Magn Reson Imaging 27(10):1333–1346

    Article  PubMed  Google Scholar 

  38. Lawrence JM, Stroman PW, Kollias SS (2008) Functional magnetic resonance imaging of the human spinal cord during vibration stimulation of different dermatomes. Neuroradiology 50(3):273–280

    Article  PubMed  Google Scholar 

  39. Stroman PW, Bosma RL, Tsyben A (2012) Somatotopic arrangement of thermal sensory regions in the healthy human spinal cord determined by means of spinal cord functional MRI. Magn Reson Med 68(3):923–931

    Article  PubMed  Google Scholar 

  40. Bosma RL, Stroman PW (2014) Spinal cord response to stepwise and block presentation of thermal stimuli: a functional MRI study. J Magn Reson Imaging 41(5):1318–1325

    Article  PubMed  Google Scholar 

  41. Stroman PW, Coe BC, Munoz DP (2011) Influence of attention focus on neural activity in the human spinal cord during thermal sensory stimulation. Magn Reson Imaging 29(1):9–18

    Article  PubMed  Google Scholar 

  42. Dobek CE, Beynon ME, Bosma RL, Stroman PW (2014) Music modulation of pain perception and pain-related activity in the brain, brainstem, and spinal cord: an fMRI study. J Pain 15(10):1057–1068

    Article  PubMed  Google Scholar 

  43. Agosta F, Valsasina P, Absinta M, Sala S, Caputo D, Filippi M (2009) Primary progressive multiple sclerosis: tactile-associated functional MR activity in the cervical spinal cord. Radiology 253(1):209–215

    Article  PubMed  Google Scholar 

  44. Agosta F, Valsasina P, Caputo D, Rocca MA, Filippi M (2009) Tactile-associated fMRI recruitment of the cervical cord in healthy subjects. Hum Brain Mapp 30(1):340–345

    Article  PubMed  Google Scholar 

  45. Agosta F, Valsasina P, Caputo D, Stroman PW, Filippi M (2008) Tactile-associated recruitment of the cervical cord is altered in patients with multiple sclerosis. Neuroimage 39(4):1542–1548

    Article  PubMed  Google Scholar 

  46. Agosta F, Valsasina P, Rocca MA, Caputo D, Sala S, Judica E, Stroman PW, Filippi M (2008) Evidence for enhanced functional activity of cervical cord in relapsing multiple sclerosis. Magn Reson Med 59(5):1035–1042

    Article  CAS  PubMed  Google Scholar 

  47. Valsasina P, Agosta F, Absinta M, Sala S, Caputo D, Filippi M (2010) Cervical cord functional MRI changes in relapse-onset MS patients. J Neurol Neurosurg Psychiatry 81(4):405–408

    Article  CAS  PubMed  Google Scholar 

  48. Valsasina P, Agosta F, Caputo D, Stroman PW, Filippi M (2008) Spinal fMRI during proprioceptive and tactile tasks in healthy subjects: activity detected using cross-correlation, general linear model and independent component analysis. Neuroradiology 50(10):895–902

    Article  CAS  PubMed  Google Scholar 

  49. Valsasina P, Rocca MA, Absinta M, Agosta F, Caputo D, Comi G, Filippi M (2012) Cervical cord FMRI abnormalities differ between the progressive forms of multiple sclerosis. Hum Brain Mapp 33(9):2072–2080

    Article  PubMed  Google Scholar 

  50. Cadotte DW, Bosma R, Mikulis D, Nugaeva N, Smith K, Pokrupa R, Islam O, Stroman PW, Fehlings MG (2012) Plasticity of the injured human spinal cord: insights revealed by spinal cord functional MRI. PLoS One 7(9):e45560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Stroman PW, Kornelsen J, Bergman A, Krause V, Ethans K, Malisza KL, Tomanek B (2004) Noninvasive assessment of the injured human spinal cord by means of functional magnetic resonance imaging. Spinal Cord 42(2):59–66

    Article  CAS  PubMed  Google Scholar 

  52. Kornelsen J, Stroman PW (2007) Detection of the neuronal activity occurring caudal to the site of spinal cord injury that is elicited during lower limb movement tasks. Spinal Cord 45(7):485–490

    Article  CAS  PubMed  Google Scholar 

  53. Stroman PW (2011) Essentials of functional MRI. Taylor & Francis Group, LLC, Boca Raton, FL

    Book  Google Scholar 

  54. Murphy K, Bodurka J, Bandettini PA (2007) How long to scan? The relationship between fMRI temporal signal to noise ratio and necessary scan duration. Neuroimage 34(2):565–574

    Article  PubMed  Google Scholar 

  55. Finsterbusch J, Eippert F, Buchel C (2012) Single, slice-specific z-shim gradient pulses improve T2*-weighted imaging of the spinal cord. Neuroimage 59(3):2307–2315

    Article  PubMed  Google Scholar 

  56. Figley CR, Stroman PW (2009) Development and validation of retrospective spinal cord motion time-course estimates (RESPITE) for spin-echo spinal fMRI: improved sensitivity and specificity by means of a motion-compensating general linear model analysis. Neuroimage 44(2):421–427

    PubMed  Google Scholar 

  57. Brooks JC, Beckmann CF, Miller KL, Wise RG, Porro CA, Tracey I, Jenkinson M (2008) Physiological noise modelling for spinal functional magnetic resonance imaging studies. Neuroimage 39(2):680–692

    Article  PubMed  Google Scholar 

  58. Verma T, Cohen-Adad J (2014) Effect of respiration on the B0 field in the human spinal cord at 3T. Magn Reson Med 72(6):1629–1636

    Article  PubMed  Google Scholar 

  59. Myronenko A, Song XB (2009) Image registration by minimization of residual complexity. Proc Cvpr IEEE. pp 49–56

    Google Scholar 

  60. Myronenko A, Song XB (2010) Intensity-based image registration by minimizing residual complexity. IEEE Trans Med Imag 29(11):1882–1891

    Article  Google Scholar 

  61. Stroman PW, Figley CR, Cahill CM (2008) Spatial normalization, bulk motion correction and coregistration for functional magnetic resonance imaging of the human cervical spinal cord and brainstem. Magn Reson Imaging 26(6):809–814

    Article  PubMed  Google Scholar 

  62. Lang J, Bartram CT (1982) Fila radicularia of the ventral and dorsal radices of the human spinal cord. Gegenbaurs Morphol Jahrb 128(4):417–462

    CAS  PubMed  Google Scholar 

  63. Gray H (1995) Gray’s anatomy: the anatomical basis of medicine and surgery. In: Williams PL, Bannister LH, Berry MM, Collins P, Dyson M, Dussek JE, Ferguson MWJ (eds) Gray’s anatomy: the anatomical basis of medicine and surgery. Churchill-Livingstone, London, pp 975–1011

    Google Scholar 

  64. Talairach J, Tournoux P (1988) Co-planar sterotaxic atlas of the human brain. Thieme Medical Publishers Inc, New York

    Google Scholar 

  65. Naidich TP, Duvernoy HM, Delman BN, Sorensen AG, Kollias SS, Haacke EM (2009) Internal architecture of the brain stem with key axial sections. Duvernoy’s atlas of the human brain stem and cerebellum. Springer, New York, pp 79–82

    Book  Google Scholar 

  66. McArdle JJ, McDonald RP (1984) Some algebraic properties of the Reticular Action Model for moment structures. Br J Math Stat Psychol 37(Pt 2):234–251

    Article  PubMed  Google Scholar 

  67. Craggs JG, Staud R, Robinson ME, Perlstein WM, Price DD (2012) Effective connectivity among brain regions associated with slow temporal summation of C-fiber-evoked pain in fibromyalgia patients and healthy controls. J Pain 13(4):390–400

    Article  PubMed  PubMed Central  Google Scholar 

  68. Buchel C, Friston K (2001) Interactions among neuronal systems assessed with functional neuroimaging. Rev Neurol 157(8–9 Pt 1):807–815

    CAS  PubMed  Google Scholar 

  69. Buchel C, Friston KJ (1997) Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling and fMRI. Cereb Cortex 7(8):768–778

    Article  CAS  PubMed  Google Scholar 

  70. Bollen KA (1989) Structural equations with latent variables. Wiley, New York

    Book  Google Scholar 

  71. Millan MJ (2002) Descending control of pain. Prog Neurobiol 66(6):355–474

    Article  CAS  PubMed  Google Scholar 

  72. Barry RL, Smith SA, Dula AN, Gore JC (2014) Resting state functional connectivity in the human spinal cord. eLife 3:e02812

    PubMed  PubMed Central  Google Scholar 

  73. Kashkouli Nejad K, Sugiura M, Thyreau B, Nozawa T, Kotozaki Y, Furusawa Y, Nishino K, Nukiwa T, Kawashima R (2014) Spinal fMRI of interoceptive attention/awareness in experts and novices. Neural Plast 2014:679509

    PubMed  PubMed Central  Google Scholar 

  74. Smith SD, Kornelsen J (2011) Emotion-dependent responses in spinal cord neurons: a spinal fMRI study. Neuroimage 58(1):269–274

    Article  PubMed  Google Scholar 

  75. Kornelsen J, Smith SD, McIver TA (2014) A neural correlate of visceral emotional responses: evidence from fMRI of the thoracic spinal cord. Soc Cogn Affect Neurosci 10(4):584–588

    Article  PubMed  PubMed Central  Google Scholar 

  76. Khan HS, Bosma RL, Beynon M, Dobek C, McIver T, Stroman PW (2013) Pain processing networks in the brain and spinal cord mapped using Functional Magnetic Resonance Imaging. Program number II6 66.01. 2013 Meeing Planner San Diego, CA; Society for Neuroscience

    Google Scholar 

  77. McIver TA, Kornelsen J, Smith SD (2013) Limb-specific emotional modulation of cervical spinal cord neurons. Cogn Affect Behav Neurosci 13(3):464–472

    Article  PubMed  Google Scholar 

  78. Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29(3):162–173

    Article  CAS  PubMed  Google Scholar 

  79. Friston KJ, Josephs O, Zarahn E, Holmes AP, Rouquette S, Poline J (2000) To smooth or not to smooth? Bias and efficiency in fMRI time-series analysis. Neuroimage 12(2):196–208

    Article  CAS  PubMed  Google Scholar 

  80. Stroman PW, Wheeler-Kingshott C, Bacon M, Schwab JM, Bosma R, Brooks J, Cadotte D, Carlstedt T, Ciccarelli O, Cohen-Adad J, Curt A, Evangelou N, Fehlings MG, Filippi M, Kelley BJ, Kollias S, Mackay A, Porro CA, Smith S, Strittmatter SM, Summers P, Tracey I (2014) The current state-of-the-art of spinal cord imaging: methods. Neuroimage 84:1070–1081

    Article  CAS  PubMed  Google Scholar 

  81. Wheeler-Kingshott CA, Stroman PW, Schwab JM, Bacon M, Bosma R, Brooks J, Cadotte DW, Carlstedt T, Ciccarelli O, Cohen-Adad J, Curt A, Evangelou N, Fehlings MG, Filippi M, Kelley BJ, Kollias S, Mackay A, Porro CA, Smith S, Strittmatter SM, Summers P, Thompson AJ, Tracey I (2014) The current state-of-the-art of spinal cord imaging: applications. Neuroimage 84:1082–1093

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Stroman Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Stroman, P., Filippi, M. (2016). Functional MRI of the Spinal Cord. In: Filippi, M. (eds) fMRI Techniques and Protocols. Neuromethods, vol 119. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-5611-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-5611-1_29

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-5609-8

  • Online ISBN: 978-1-4939-5611-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics