fMRI in Neurosurgery

  • Oliver GanslandtEmail author
  • Christopher Nimsky
  • Michael Buchfelder
  • Peter GrummichEmail author
Part of the Neuromethods book series (NM, volume 119)


Functional magnetic resonance imaging has evolved from a basic research application to a useful clinical tool that also has found its place in modern neurosurgery. The localization of functional important brain areas as language and sensorimotor cortex has been the focus of numerous investigations and can now be implemented in neurosurgical planning. Since the neurosurgeon must have detailed knowledge about the individual anatomy and related neurological function to resect a brain tumor with the highest safety, the need for individualized maps of brain function is essential. Advanced fMRI techniques and modern imaging methods contribute significantly to brain mapping as do already established concepts of electrophysiological monitoring and the Wada test. The implementation of functional maps into neuronavigation systems enables the surgeon to superimpose anatomy and function to the surgical site. This chapter describes our experience with the use of fMRI in neurosurgery.

Key words

fMRI Neurosurgery Functional neuronavigation Magnetoencephalography Language Somatosensory cortex 


  1. 1.
    Penfield W, Rasmussen T (1950) The cerebral cortex of man. A clinical study of localization of function. Macmillan, New YorkGoogle Scholar
  2. 2.
    Berger MS, Rostomily RC (1997) Low grade gliomas: functional mapping resection strategies, extent of resection, and outcome. J Neurooncol 34:85–101CrossRefPubMedGoogle Scholar
  3. 3.
    Duffau H, Capelle L, Denvil D, Sichez N, Gatignol P et al (2003) Usefulness of intraoperative electrical subcortical mapping during surgery for low-grade gliomas located within eloquent brain regions: functional results in a consecutive series of 103 patients. J Neurosurg 98:764–778CrossRefPubMedGoogle Scholar
  4. 4.
    Kober H, Moller M, Nimsky C, Vieth J, Fahlbusch R et al (2001) New approach to localize speech relevant brain areas and hemispheric dominance using spatially filtered magnetoencephalography. Hum Brain Mapp 14:236–250CrossRefPubMedGoogle Scholar
  5. 5.
    Roux FE, Boulanouar K, Lotterie JA, Mejdoubi M, LeSage JP et al (2003) Language functional magnetic resonance imaging in preoperative assessment of language areas: correlation with direct cortical stimulation. Neurosurgery 52:1335–1345, discussion 1345–1337CrossRefPubMedGoogle Scholar
  6. 6.
    Nimsky C, Ganslandt O, Kober H, Moller M, Ulmer S et al (1999) Integration of functional magnetic resonance imaging supported by magnetoencephalography in functional neuronavigation. Neurosurgery 44:1249–1255, discussion 1255–1246PubMedGoogle Scholar
  7. 7.
    Rutten GJ, Ramsey N, Noordmans HJ, Willems P, van Rijen P et al (2003) Toward functional neuronavigation: implementation of functional magnetic resonance imaging data in a surgical guidance system for intraoperative identification of motor and language cortices. Technical note and illustrative case. Neurosurg Focus 15:E6CrossRefPubMedGoogle Scholar
  8. 8.
    Rossler K, Sommer B, Grummich P, Hamer HM, Pauli E et al (2015) Risk reduction in dominant temporal lobe epilepsy surgery combining fMRI/DTI maps, neuronavigation and intraoperative 1.5-Tesla MRI. Stereotact Funct Neurosurg 93:168–177CrossRefPubMedGoogle Scholar
  9. 9.
    Zhang J, Chen X, Zhao Y, Wang F, Li F et al (2015) Impact of intraoperative magnetic resonance imaging and functional neuronavigation on surgical outcome in patients with gliomas involving language areas. Neurosurg Rev 38:319–330, discussion 330CrossRefPubMedGoogle Scholar
  10. 10.
    Sun GC, Chen XL, Yu XG, Zhang M, Liu G et al (2015) Functional neuronavigation-guided transparieto-occipital cortical resection of meningiomas in trigone of lateral ventricle. World Neurosurg 84(3):756–765CrossRefPubMedGoogle Scholar
  11. 11.
    Duffau H, Denvil D, Capelle L (2002) Long term reshaping of language, sensory, and motor maps after glioma resection: a new parameter to integrate in the surgical strategy. J Neurol Neurosurg Psychiatry 72:511–516PubMedPubMedCentralGoogle Scholar
  12. 12.
    Grummich P, Nimsky C, Fahlbusch R, Ganslandt O (2005) Observation of unaveraged giant MEG activity from language areas during speech tasks in patients harboring brain lesions very close to essential language areas: expression of brain plasticity in language processing networks? Neurosci Lett 380:143–148CrossRefPubMedGoogle Scholar
  13. 13.
    Tieleman A, Vandemaele P, Seurinck R, Deblaere K, Achten E (2007) Comparison between functional magnetic resonance imaging at 1.5 and 3 Tesla: effect of increased field strength on 4 paradigms used during presurgical work-up. Invest Radiol 42:130–138CrossRefPubMedGoogle Scholar
  14. 14.
    Matthews PM, Jezzard P (2004) Functional magnetic resonance imaging. J Neurol Neurosurg Psychiatry 75:6–12PubMedPubMedCentralGoogle Scholar
  15. 15.
    Tharin S, Golby A (2007) Functional brain mapping and its applications to neurosurgery. Neurosurgery 60:185–201, discussion 201–202PubMedGoogle Scholar
  16. 16.
    Majos A, Tybor K, Stefanczyk L, Goraj B (2005) Cortical mapping by functional magnetic resonance imaging in patients with brain tumors. Eur Radiol 15:1148–1158CrossRefPubMedGoogle Scholar
  17. 17.
    Roux FE, Boulanouar K, Ibarrola D, Tremoulet M, Chollet F et al (2000) Functional MRI and intraoperative brain mapping to evaluate brain plasticity in patients with brain tumours and hemiparesis. J Neurol Neurosurg Psychiatry 69:453–463CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Desmond JE, Sum JM, Wagner AD, Demb JB, Shear PK et al (1995) Functional MRI measurement of language lateralization in Wada-tested patients. Brain 118(Pt 6):1411–1419CrossRefPubMedGoogle Scholar
  19. 19.
    Lehericy S, Cohen L, Bazin B, Samson S, Giacomini E et al (2000) Functional MR evaluation of temporal and frontal language dominance compared with the Wada test. Neurology 54:1625–1633CrossRefPubMedGoogle Scholar
  20. 20.
    Stippich C, Rapps N, Dreyhaupt J, Durst A, Kress B et al (2007) Localizing and lateralizing language in patients with brain tumors: feasibility of routine preoperative functional MR imaging in 81 consecutive patients. Radiology 243:828–836CrossRefPubMedGoogle Scholar
  21. 21.
    Branco DM, Suarez RO, Whalen S, O’Shea JP, Nelson AP et al (2006) Functional MRI of memory in the hippocampus: laterality indices may be more meaningful if calculated from whole voxel distributions. Neuroimage 32:592–602CrossRefPubMedGoogle Scholar
  22. 22.
    Thesen S, Heid O, Mueller E, Schad R (2000) Prospective acquisition correction for head motion with image-base tracking for real-time fMRI. Magn Reson Med 44:457–465CrossRefPubMedGoogle Scholar
  23. 23.
    Springer JA, Binder JR, Hammeke TA, Swanson SJ, Frost JA et al (1999) Language dominance in neurologically normal and epilepsy subjects: a functional MRI study. Brain 122(Pt 11):2033–2046CrossRefPubMedGoogle Scholar
  24. 24.
    Grummich P, Nimsky C, Pauli E, Buchfelder M, Ganslandt O (2006) Combining fMRI and MEG increases the reliability of presurgical language localization: a clinical study on the difference between and congruence of both modalities. Neuroimage 32:1793–1803CrossRefPubMedGoogle Scholar
  25. 25.
    Herholz K, Reulen HJ, von Stockhausen HM, Thiel A, Ilmberger J et al (1997) Preoperative activation and intraoperative stimulation of language-related areas in patients with glioma. Neurosurgery 41:1253–1260, discussion 1260–1262CrossRefPubMedGoogle Scholar
  26. 26.
    Lazar RM, Marshall RS, Pile-Spellman J, Duong HC, Mohr JP et al (2000) Interhemispheric transfer of language in patients with left frontal cerebral arteriovenous malformation. Neuropsychologia 38:1325–1332CrossRefPubMedGoogle Scholar
  27. 27.
    Duffau H, Lopes M, Arthuis F, Bitar A, Sichez JP et al (2005) Contribution of intraoperative electrical stimulations in surgery of low grade gliomas: a comparative study between two series without (1985–96) and with (1996–2003) functional mapping in the same institution. J Neurol Neurosurg Psychiatry 76:845–851CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Berman JI, Berger MS, Chung SW, Nagarajan SS, Henry RG (2007) Accuracy of diffusion tensor magnetic resonance imaging tractography assessed using intraoperative subcortical stimulation mapping and magnetic source imaging. J Neurosurg 107:488–494CrossRefPubMedGoogle Scholar
  29. 29.
    Haglund MM, Berger MS, Shamseldin M, Lettich E, Ojemann GA (1994) Cortical localization of temporal lobe language sites in patients with gliomas. Neurosurgery 34:567–576, discussion 576CrossRefPubMedGoogle Scholar
  30. 30.
    Hamzei F, Knab R, Weiller C, Roether J (2002) Intra- und extrakranielle Gefäßstenosen beeinflussen BOLD Antwort. Aktuelle Neurologie 29:231Google Scholar
  31. 31.
    Holodny AI, Schulder M, Liu WC, Maldjian JA, Kalnin AJ (1999) Decreased BOLD functional MR activation of the motor and sensory cortices adjacent to a glioblastoma multiforme: implications for image-guided neurosurgery. AJNR Am J Neuroradiol 20:609–612PubMedGoogle Scholar
  32. 32.
    Holodny AI, Schulder M, Liu WC, Wolko J, Maldjian JA et al (2000) The effect of brain tumors on BOLD functional MR imaging activation in the adjacent motor cortex: implications for image-guided neurosurgery. AJNR Am J Neuroradiol 21:1415–1422PubMedGoogle Scholar
  33. 33.
    Schreiber A, Hubbe U, Ziyeh S, Hennig J (2000) The influence of gliomas and nonglial space-occupying lesions on blood-oxygen-level-dependent contrast enhancement. AJNR Am J Neuroradiol 21:1055–1063PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Neurochirurgische KlinikKlinikum StuttgartStuttgartGermany
  2. 2.Department of NeurosurgeryUniversitätsklinikum ErlangenErlangenGermany

Personalised recommendations