fMRI in Psychiatric Disorders

  • Erin L. Habecker
  • Melissa A. Daniels
  • Elisa Canu
  • Maria A. Rocca
  • Massimo Filippi
  • Perry F. RenshawEmail author
Part of the Neuromethods book series (NM, volume 119)


Functional neuroimaging has become an important tool for clinical research, with the potentiality to provide information on psychiatric disease pathology and treatment response. We review functional magnetic resonance imaging (fMRI) research findings for five psychiatric disorders: schizophrenia, major depressive disorder, bipolar disorder, obsessive-compulsive disorder, and posttraumatic stress disorder. Brain functional abnormalities and possible underlying mechanisms for disease symptoms are discussed, with a focus on future clinical implications for fMRI in psychiatric disease.

Key words

fMRI Blood oxygen level dependent Psychiatric disorders Schizophrenia Major depressive disorder Bipolar disorder Obsessive-compulsive disorder Posttraumatic stress disorder 


  1. 1.
    Brown GG, Perthen JE, Liu TT, Buxton RB (2007) A primer on functional magnetic resonance imaging. Neuropsychol Rev 17(2):107–125PubMedCrossRefGoogle Scholar
  2. 2.
    Francati V, Vermetten E, Bremner JD (2007) Functional neuroimaging studies in posttraumatic stress disorder: review of current methods and findings. Depress Anxiety 24(3):202–218PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Giardino ND, Friedman SD, Dager SR (2007) Anxiety, respiration, and cerebral blood flow: implications for functional brain imaging. Compr Psychiatry 48(2):103–112PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Yurgelun-Todd DA, Renshaw PF, Femia LA (2006) Applications of fMRI to psychiatry. In: Faro SH, Mohamed FB (eds) Functional MRI: basic principles and clinical applications. Springer, New York, pp 183–220CrossRefGoogle Scholar
  5. 5.
    Lai S, Hopkins AL, Haacke EM, Li D, Wasserman BA, Buckley P, Friedman L, Meltzer H, Hedera P, Friedland R (1993) Identification of vascular structures as a major source of signal contrast in high resolution 2D and 3D functional activation imaging of the motor cortex at 1.5T: preliminary results. Magn Reson Med 30(3):387–392PubMedCrossRefGoogle Scholar
  6. 6.
    Saad ZS, Ropella KM, DeYoe EA, Bandettini PA (2003) The spatial extent of the BOLD response. Neuroimage 19(1):132–144PubMedCrossRefGoogle Scholar
  7. 7.
    Ide K, Eliasziw M, Poulin MJ (2003) Relationship between middle cerebral artery blood velocity and end-tidal PCO2 in the hypocapnic-hypercapnic range in humans. J Appl Physiol (1985) 95(1):129–137CrossRefGoogle Scholar
  8. 8.
    Poulin MJ, Liang PJ, Robbins PA (1996) Dynamics of the cerebral blood flow response to step changes in end-tidal PCO2 and PO2 in humans. J Appl Physiol (1985) 81(3):1084–1095Google Scholar
  9. 9.
    Rostrup E, Knudsen GM, Law I, Holm S, Larsson HBW, Paulson OB (2005) The relationship between cerebral blood flow and volume in humans. Neuroimage 24(1):1–11PubMedCrossRefGoogle Scholar
  10. 10.
    Grubb RL, Raichle ME, Eichling JO, Ter-Pogossian MM (1974) The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time. Stroke 5(5):630–639PubMedCrossRefGoogle Scholar
  11. 11.
    Reiman EM, Raichle ME, Robins E, Butler FK, Herscovitch P, Fox P, Perlmutter J (1986) The application of positron emission tomography to the study of panic disorder. Am J Psychiatry 143(4):469–477PubMedCrossRefGoogle Scholar
  12. 12.
    Aguirre GK, Detre JA, Wang J (2005) Perfusion fMRI for functional neuroimaging. Int Rev Neurobiol 66:213–236PubMedCrossRefGoogle Scholar
  13. 13.
    Liu TT, Brown GG (2007) Measurement of cerebral perfusion with arterial spin labeling: Part 1. Methods. J Int Neuropsychol Soc 13(3):517–525. doi: 10.1017/S1355617707070646 PubMedCrossRefGoogle Scholar
  14. 14.
    Rao SM, Salmeron BJ, Durgerian S, Janowiak JA, Fischer M, Risinger RC, Conant LL, Stein EA (2000) Effects of methylphenidate on functional MRI blood-oxygen-level-dependent contrast. Am J Psychiatry 157(10):1697–1699PubMedCrossRefGoogle Scholar
  15. 15.
    Mildner T, Zysset S, Trampel R, Driesel W, Moller HE (2005) Towards quantification of blood-flow changes during cognitive task activation using perfusion-based fMRI. Neuroimage 27(4):919–926PubMedCrossRefGoogle Scholar
  16. 16.
    Tjandra T, Brooks JCW, Figueiredo P, Wise R, Matthews PM, Tracey I (2005) Quantitative assessment of the reproducibility of functional activation measured with BOLD and MR perfusion imaging: implications for clinical trial design. Neuroimage 27(2):393–401PubMedCrossRefGoogle Scholar
  17. 17.
    Mayberg HS (2003) Modulating dysfunctional limbic-cortical circuits in depression: towards development of brain-based algorithms for diagnosis and optimised treatment. Br Med Bull 65:193–207PubMedCrossRefGoogle Scholar
  18. 18.
    Deckersbach T, Dougherty DD, Rauch SL (2006) Functional imaging of mood and anxiety disorders. J Neuroimaging 16(1):1–10PubMedCrossRefGoogle Scholar
  19. 19.
    Fu CHY, Williams SCR, Cleare AJ, Brammer MJ, Walsh ND, Kim J, Andrew CM, Pich EM, Williams PM, Reed LJ, Mitterschiffthaler MT, Suckling J, Bullmore ET (2004) Attenuation of the neural response to sad faces in major depression by antidepressant treatment: a prospective, event-related functional magnetic resonance imaging study. Arch Gen Psychiatry 61(9):877–889PubMedCrossRefGoogle Scholar
  20. 20.
    Manoach DS, Gollub RL, Benson ES, Searl MM, Goff DC, Halpern E, Saper CB, Rauch SL (2000) Schizophrenic subjects show aberrant fMRI activation of dorsolateral prefrontal cortex and basal ganglia during working memory performance. Biol Psychiatry 48(2):99–9109PubMedCrossRefGoogle Scholar
  21. 21.
    Rubia K, Russell T, Bullmore ET, Soni W, Brammer MJ, Simmons A, Taylor E, Andrew C, Giampietro V, Sharma T (2001) An fMRI study of reduced left prefrontal activation in schizophrenia during normal inhibitory function. Schizophr Res 52(1–2):47–55PubMedCrossRefGoogle Scholar
  22. 22.
    Hempel A, Hempel E, Schonknecht P, Stippich C, Schroder J (2003) Impairment in basal limbic function in schizophrenia during affect recognition. Psychiatry Res 122(2):115–124PubMedCrossRefGoogle Scholar
  23. 23.
    Hofer A, Weiss EM, Golaszewski SM, Siedentopf CM, Brinkhoff C, Kremser C, Felber S, Fleischhacker WW (2003) An FMRI study of episodic encoding and recognition of words in patients with schizophrenia in remission. Am J Psychiatry 160(5):911–918PubMedCrossRefGoogle Scholar
  24. 24.
    Kubicki M, McCarley RW, Nestor PG, Huh T, Kikinis R, Shenton ME, Wible CG (2003) An fMRI study of semantic processing in men with schizophrenia. Neuroimage 20(4):1923–1933PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Habel U, Klein M, Shah NJ, Toni I, Zilles K, Falkai P, Schneider F (2004) Genetic load on amygdala hypofunction during sadness in nonaffected brothers of schizophrenia patients. Am J Psychiatry 161(10):1806–1813PubMedCrossRefGoogle Scholar
  26. 26.
    Ragland JD, Gur RC, Valdez J, Turetsky BI, Elliott M, Kohler C, Siegel S, Kanes S, Gur RE (2004) Event-related fMRI of frontotemporal activity during word encoding and recognition in schizophrenia. Am J Psychiatry 161(6):1004–1015PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Takahashi H, Koeda M, Oda K, Matsuda T, Matsushima E, Matsuura M, Asai K, Okubo Y (2004) An fMRI study of differential neural response to affective pictures in schizophrenia. Neuroimage 22(3):1247–1254PubMedCrossRefGoogle Scholar
  28. 28.
    Williams LM, Das P, Harris AWF, Liddell BB, Brammer MJ, Olivieri G, Skerrett D, Phillips ML, David AS, Peduto A, Gordon E (2004) Dysregulation of arousal and amygdala-prefrontal systems in paranoid schizophrenia. Am J Psychiatry 161(3):480–489PubMedCrossRefGoogle Scholar
  29. 29.
    Honey GD, Honey RAE, O’Loughlin C, Sharar SR, Kumaran D, Suckling J, Menon DK, Sleator C, Bullmore ET, Fletcher PC (2005) Ketamine disrupts frontal and hippocampal contribution to encoding and retrieval of episodic memory: an fMRI study. Cereb Cortex 15(6):749–759PubMedCrossRefGoogle Scholar
  30. 30.
    Morey RA, Inan S, Mitchell TV, Perkins DO, Lieberman JA, Belger A (2005) Imaging frontostriatal function in ultra-high-risk, early, and chronic schizophrenia during executive processing. Arch Gen Psychiatry 62(3):254–262PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Yurgelun-Todd DA, Coyle JT, Gruber SA, Renshaw PF, Silveri MM, Amico E, Cohen B, Goff DC (2005) Functional magnetic resonance imaging studies of schizophrenic patients during word production: effects of D-cycloserine. Psychiatry Res 138(1):23–31PubMedCrossRefGoogle Scholar
  32. 32.
    Juckel G, Schlagenhauf F, Koslowski M, Filonov D, Wustenberg T, Villringer A, Knutson B, Kienast T, Gallinat J, Wrase J, Heinz A (2006) Dysfunction of ventral striatal reward prediction in schizophrenic patients treated with typical, not atypical, neuroleptics. Psychopharmacology (Berl) 187(2):222–228CrossRefGoogle Scholar
  33. 33.
    Vink M, Ramsey NF, Raemaekers M, Kahn RS (2006) Striatal dysfunction in schizophrenia and unaffected relatives. Biol Psychiatry 60(1):32–39PubMedCrossRefGoogle Scholar
  34. 34.
    Braver TS, Barch DM, Kelley WM, Buckner RL, Cohen NJ, Miezin FM, Snyder AZ, Ollinger JM, Akbudak E, Conturo TE, Petersen SE (2001) Direct comparison of prefrontal cortex regions engaged by working and long-term memory tasks. Neuroimage 14(1 Pt 1):48–59PubMedCrossRefGoogle Scholar
  35. 35.
    Cohen NJ, Ryan J, Hunt C, Romine L, Wszalek T, Nash C (1999) Hippocampal system and declarative (relational) memory: summarizing the data from functional neuroimaging studies. Hippocampus 9(1):83–98PubMedCrossRefGoogle Scholar
  36. 36.
    Nyberg L, Marklund P, Persson J, Cabeza R, Forkstam C, Petersson KM, Ingvar M (2003) Common prefrontal activations during working memory, episodic memory, and semantic memory. Neuropsychologia 41(3):371–377PubMedCrossRefGoogle Scholar
  37. 37.
    Klosterkotter J, Schultze-Lutter F, Bechdolf A, Ruhrmann S (2011) Prediction and prevention of schizophrenia: what has been achieved and where to go next? World Psychiatry 10(3):165–174PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Yung AR, Phillips LJ, Yuen HP, McGorry PD (2004) Risk factors for psychosis in an ultra high-risk group: psychopathology and clinical features. Schizophr Res 67(2–3):131–142. doi: 10.1016/S0920-9964(03)00192-0 PubMedCrossRefGoogle Scholar
  39. 39.
    Yung AR, Phillips LJ, Yuen HP, Francey SM, McFarlane CA, Hallgren M, McGorry PD (2003) Psychosis prediction: 12-month follow up of a high-risk (“prodromal”) group. Schizophr Res 60(1):21–32, S0920996402001676 [pii]PubMedCrossRefGoogle Scholar
  40. 40.
    Falkenberg I, Chaddock C, Murray RM, McDonald C, Modinos G, Bramon E, Walshe M, Broome M, McGuire P, Allen P (2015) Failure to deactivate medial prefrontal cortex in people at high risk for psychosis. Eur Psychiatry 30(5):633–640. doi: 10.1016/j.eurpsy.2015.03.003 PubMedCrossRefGoogle Scholar
  41. 41.
    Karlsgodt KH, van Erp TG, Bearden CE, Cannon TD (2014) Altered relationships between age and functional brain activation in adolescents at clinical high risk for psychosis. Psychiatry Res 221(1):21–29. doi: 10.1016/j.pscychresns.2013.08.004 PubMedCrossRefGoogle Scholar
  42. 42.
    Lord LD, Allen P, Expert P, Howes O, Broome M, Lambiotte R, Fusar-Poli P, Valli I, McGuire P, Turkheimer FE (2012) Functional brain networks before the onset of psychosis: a prospective fMRI study with graph theoretical analysis. NeuroImage Clin 1(1):91–98. doi: 10.1016/j.nicl.2012.09.008 PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Pulkkinen J, Nikkinen J, Kiviniemi V, Maki P, Miettunen J, Koivukangas J, Mukkala S, Nordstrom T, Barnett JH, Jones PB, Moilanen I, Murray GK, Veijola J (2015) Functional mapping of dynamic happy and fearful facial expressions in young adults with familial risk for psychosis—Oulu brain and mind study. Schizophr Res 164(1–3):242–249. doi: 10.1016/j.schres.2015.01.039 PubMedCrossRefGoogle Scholar
  44. 44.
    Hart SJ, Bizzell J, McMahon MA, Gu H, Perkins DO, Belger A (2013) Altered fronto-limbic activity in children and adolescents with familial high risk for schizophrenia. Psychiatry Res 212(1):19–27. doi: 10.1016/j.pscychresns.2012.12.003 PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Li HJ, Chan RC, Gong QY, Liu Y, Liu SM, Shum D, Ma ZL (2012) Facial emotion processing in patients with schizophrenia and their non-psychotic siblings: a functional magnetic resonance imaging study. Schizophr Res 134(2–3):143–150. doi: 10.1016/j.schres.2011.10.019 PubMedCrossRefGoogle Scholar
  46. 46.
    Barbour T, Pruitt P, Diwadkar VA (2012) fMRI responses to emotional faces in children and adolescents at genetic risk for psychiatric illness share some of the features of depression. J Affect Disord 136(3):276–285. doi: 10.1016/j.jad.2011.11.036 PubMedCrossRefGoogle Scholar
  47. 47.
    Habel U, Chechko N, Pauly K, Koch K, Backes V, Seiferth N, Shah NJ, Stocker T, Schneider F, Kellermann T (2010) Neural correlates of emotion recognition in schizophrenia. Schizophr Res 122(1–3):113–123. doi: 10.1016/j.schres.2010.06.009 PubMedCrossRefGoogle Scholar
  48. 48.
    Rausch F, Mier D, Eifler S, Esslinger C, Schilling C, Schirmbeck F, Englisch S, Meyer-Lindenberg A, Kirsch P, Zink M (2014) Reduced activation in ventral striatum and ventral tegmental area during probabilistic decision-making in schizophrenia. Schizophr Res 156(2–3):143–149. doi: 10.1016/j.schres.2014.04.020 PubMedCrossRefGoogle Scholar
  49. 49.
    Chung YS, Kang DH, Shin NY, Yoo SY, Kwon JS (2008) Deficit of theory of mind in individuals at ultra-high-risk for schizophrenia. Schizophr Res 99(1–3):111–118. doi: 10.1016/j.schres.2007.11.012 PubMedCrossRefGoogle Scholar
  50. 50.
    Marjoram D, Job DE, Whalley HC, Gountouna VE, McIntosh AM, Simonotto E, Cunningham-Owens D, Johnstone EC, Lawrie S (2006) A visual joke fMRI investigation into Theory of Mind and enhanced risk of schizophrenia. Neuroimage 31(4):1850–1858. doi: 10.1016/j.neuroimage.2006.02.011 PubMedCrossRefGoogle Scholar
  51. 51.
    Drevets WC (2000) Neuroimaging studies of mood disorders. Biol Psychiatry 48(8):813–829PubMedCrossRefGoogle Scholar
  52. 52.
    Mayberg HS (1997) Limbic-cortical dysregulation: a proposed model of depression. J Neuropsychiatry Clin Neurosci 9(3):471–481PubMedCrossRefGoogle Scholar
  53. 53.
    Mayberg HS, Liotti M, Brannan SK, McGinnis S, Mahurin RK, Jerabek PA, Silva JA, Tekell JL, Martin CC, Lancaster JL, Fox PT (1999) Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am J Psychiatry 156(5):675–682PubMedGoogle Scholar
  54. 54.
    Baxter LR, Schwartz JM, Phelps ME, Mazziotta JC, Guze BH, Selin CE, Gerner RH, Sumida RM (1989) Reduction of prefrontal cortex glucose metabolism common to three types of depression. Arch Gen Psychiatry 46(3):243–250PubMedCrossRefGoogle Scholar
  55. 55.
    Bench CJ, Friston KJ, Brown RG, Scott LC, Frackowiak RS, Dolan RJ (1992) The anatomy of melancholia—focal abnormalities of cerebral blood flow in major depression. Psychol Med 22(3):607–615PubMedCrossRefGoogle Scholar
  56. 56.
    Drevets WC, Price JL, Simpson JR, Todd RD, Reich T, Vannier M, Raichle ME (1997) Subgenual prefrontal cortex abnormalities in mood disorders. Nature 386(6627):824–827PubMedCrossRefGoogle Scholar
  57. 57.
    Liotti M, Mayberg HS, Brannan SK, McGinnis S, Jerabek P, Fox PT (2000) Differential limbic–cortical correlates of sadness and anxiety in healthy subjects: implications for affective disorders. Biol Psychiatry 48(1):30–42PubMedCrossRefGoogle Scholar
  58. 58.
    Siegle GJ, Steinhauer SR, Thase ME, Stenger VA, Carter CS (2002) Can’t shake that feeling: event-related fMRI assessment of sustained amygdala activity in response to emotional information in depressed individuals. Biol Psychiatry 51(9):693–707PubMedCrossRefGoogle Scholar
  59. 59.
    Siegle GJ, Thompson W, Carter CS, Steinhauer SR, Thase ME (2007) Increased amygdala and decreased dorsolateral prefrontal BOLD responses in unipolar depression: related and independent features. Biol Psychiatry 61(2):198–209PubMedCrossRefGoogle Scholar
  60. 60.
    Surguladze SA, Young AW, Senior C, Brebion G, Travis MJ, Phillips ML (2004) Recognition accuracy and response bias to happy and sad facial expressions in patients with major depression. Neuropsychology 18(2):212–218PubMedCrossRefGoogle Scholar
  61. 61.
    Del-Ben CM, Deakin JF, McKie S, Delvai NA, Williams SR, Elliott R, Dolan M, Anderson IM (2005) The effect of citalopram pretreatment on neuronal responses to neuropsychological tasks in normal volunteers: an FMRI study. Neuropsychopharmacology 30(9):1724–1734. doi: 10.1038/sj.npp.1300728 PubMedCrossRefGoogle Scholar
  62. 62.
    Wagner G, Sinsel E, Sobanski T, Kohler S, Marinou V, Mentzel H-J, Sauer H, Schlosser RGM (2006) Cortical inefficiency in patients with unipolar depression: an event-related FMRI study with the Stroop task. Biol Psychiatry 59(10):958–965PubMedCrossRefGoogle Scholar
  63. 63.
    Vollm B, Richardson P, McKie S, Elliott R, Deakin JFW, Anderson IM (2006) Serotonergic modulation of neuronal responses to behavioural inhibition and reinforcing stimuli: an fMRI study in healthy volunteers. Eur J Neurosci 23(2):552–560PubMedCrossRefGoogle Scholar
  64. 64.
    Walter H, Wolf RC, Spitzer M, Vasic N (2007) Increased left prefrontal activation in patients with unipolar depression: an event-related, parametric, performance-controlled fMRI study. J Affect Disord 101(1–3):175–185PubMedCrossRefGoogle Scholar
  65. 65.
    Yurgelun-Todd DA, Gruber SA, Kanayama G, Killgore WD, Baird AA, Young AD (2000) fMRI during affect discrimination in bipolar affective disorder. Bipolar Disord 2(3 Pt 2):237–248PubMedCrossRefGoogle Scholar
  66. 66.
    Blumberg HP, Donegan NH, Sanislow CA, Collins S, Lacadie C, Skudlarski P, Gueorguieva R, Fulbright RK, McGlashan TH, Gore JC, Krystal JH (2005) Preliminary evidence for medication effects on functional abnormalities in the amygdala and anterior cingulate in bipolar disorder. Psychopharmacology (Berl) 183(3):308–313CrossRefGoogle Scholar
  67. 67.
    Adler CM, Holland SK, Schmithorst V, Tuchfarber MJ, Strakowski SM (2004) Changes in neuronal activation in patients with bipolar disorder during performance of a working memory task. Bipolar Disord 6(6):540–549PubMedCrossRefGoogle Scholar
  68. 68.
    Chang K, Adleman NE, Dienes K, Simeonova DI, Menon V, Reiss A (2004) Anomalous prefrontal-subcortical activation in familial pediatric bipolar disorder: a functional magnetic resonance imaging investigation. Arch Gen Psychiatry 61(8):781–792PubMedCrossRefGoogle Scholar
  69. 69.
    Gruber SA, Rogowska J, Yurgelun-Todd DA (2004) Decreased activation of the anterior cingulate in bipolar patients: an fMRI study. J Affect Disord 82(2):191–201PubMedCrossRefGoogle Scholar
  70. 70.
    Lawrence NS, Williams AM, Surguladze S, Giampietro V, Brammer MJ, Andrew C, Frangou S, Ecker C, Phillips ML (2004) Subcortical and ventral prefrontal cortical neural responses to facial expressions distinguish patients with bipolar disorder and major depression. Biol Psychiatry 55(6):578–587PubMedCrossRefGoogle Scholar
  71. 71.
    Malhi GS, Lagopoulos J, Sachdev P, Mitchell PB, Ivanovski B, Parker GB (2004) Cognitive generation of affect in hypomania: an fMRI study. Bipolar Disord 6(4):271–285. doi: 10.1111/j.1399-5618.2004.00123.x PubMedCrossRefGoogle Scholar
  72. 72.
    Malhi GS, Lagopoulos J, Ward PB, Kumari V, Mitchell PB, Parker GB, Ivanovski B, Sachdev P (2004) Cognitive generation of affect in bipolar depression: an fMRI study. Eur J Neurosci 19(3):741–754PubMedCrossRefGoogle Scholar
  73. 73.
    Monks PJ, Thompson JM, Bullmore ET, Suckling J, Brammer MJ, Williams SCR, Simmons A, Giles N, Lloyd AJ, Harrison CL, Seal M, Murray RM, Ferrier IN, Young AH, Curtis VA (2004) A functional MRI study of working memory task in euthymic bipolar disorder: evidence for task-specific dysfunction. Bipolar Disord 6(6):550–564PubMedCrossRefGoogle Scholar
  74. 74.
    Frangou S, Raymont V, Bettany D (2002) The Maudsley bipolar disorder project. A survey of psychotropic prescribing patterns in bipolar I disorder. Bipolar Disord 4(6):378–385PubMedCrossRefGoogle Scholar
  75. 75.
    Strakowski SM, Delbello MP, Adler CM (2005) The functional neuroanatomy of bipolar disorder: a review of neuroimaging findings. Mol Psychiatry 10(1):105–116PubMedCrossRefGoogle Scholar
  76. 76.
    Pavuluri MN, O’Connor MM, Harral E, Sweeney JA (2007) Affective neural circuitry during facial emotion processing in pediatric bipolar disorder. Biol Psychiatry 62(2):158–167PubMedCrossRefGoogle Scholar
  77. 77.
    Lagopoulos J, Ivanovski B, Malhi GS (2007) An event-related functional MRI study of working memory in euthymic bipolar disorder. J Psychiatry Neurosci 32(3):174–184PubMedPubMedCentralGoogle Scholar
  78. 78.
    Sheline YI, Barch DM, Donnelly JM, Ollinger JM, Snyder AZ, Mintun MA (2001) Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment: an fMRI study. Biol Psychiatry 50(9):651–658PubMedCrossRefGoogle Scholar
  79. 79.
    Chen C-H, Ridler K, Suckling J, Williams S, Fu CHY, Merlo-Pich E, Bullmore E (2007) Brain imaging correlates of depressive symptom severity and predictors of symptom improvement after antidepressant treatment. Biol Psychiatry 62(5):407–414PubMedCrossRefGoogle Scholar
  80. 80.
    Casement MD, Guyer AE, Hipwell AE, McAloon RL, Hoffmann AM, Keenan KE, Forbes EE (2014) Girls’ challenging social experiences in early adolescence predict neural response to rewards and depressive symptoms. Dev Cogn Neurosci 8:18–27. doi: 10.1016/j.dcn.2013.12.003 PubMedCrossRefGoogle Scholar
  81. 81.
    Sharp C, Kim S, Herman L, Pane H, Reuter T, Strathearn L (2014) Major depression in mothers predicts reduced ventral striatum activation in adolescent female offspring with and without depression. J Abnorm Psychol 123(2):298–309. doi: 10.1037/a0036191 PubMedCrossRefGoogle Scholar
  82. 82.
    Whalley HC, Sussmann JE, Romaniuk L, Stewart T, Papmeyer M, Sprooten E, Hackett S, Hall J, Lawrie SM, McIntosh AM (2013) Prediction of depression in individuals at high familial risk of mood disorders using functional magnetic resonance imaging. PLoS One 8(3):e57357. doi: 10.1371/journal.pone.0057357 PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Mannie ZN, Filippini N, Williams C, Near J, Mackay CE, Cowen PJ (2014) Structural and functional imaging of the hippocampus in young people at familial risk of depression. Psychol Med 44(14):2939–2948. doi: 10.1017/S0033291714000580 PubMedCrossRefGoogle Scholar
  84. 84.
    Miskowiak KW, Glerup L, Vestbo C, Harmer CJ, Reinecke A, Macoveanu J, Siebner HR, Kessing LV, Vinberg M (2015) Different neural and cognitive response to emotional faces in healthy monozygotic twins at risk of depression. Psychol Med 45(7):1447–1458. doi: 10.1017/S0033291714002542 PubMedCrossRefGoogle Scholar
  85. 85.
    Yurgelun-Todd DA, Ross AJ (2006) Functional magnetic resonance imaging studies in bipolar disorder. CNS Spectr 11(4):287–297PubMedCrossRefGoogle Scholar
  86. 86.
    Blumberg HP, Leung HC, Skudlarski P, Lacadie CM, Fredericks CA, Harris BC, Charney DS, Gore JC, Krystal JH, Peterson BS (2003) A functional magnetic resonance imaging study of bipolar disorder: state- and trait-related dysfunction in ventral prefrontal cortices. Arch Gen Psychiatry 60(6):601–609. doi: 10.1001/archpsyc.60.6.601 PubMedCrossRefGoogle Scholar
  87. 87.
    Strakowski SM, Adler CM, Holland SK, Mills NP, DelBello MP, Eliassen JC (2005) Abnormal FMRI brain activation in euthymic bipolar disorder patients during a counting Stroop interference task. Am J Psychiatry 162(9):1697–1705PubMedCrossRefGoogle Scholar
  88. 88.
    Goodwin FK, Jamison KR (1990) Manic-depressive illness. Oxford University Press, New YorkGoogle Scholar
  89. 89.
    Deveney CM, Connolly ME, Jenkins SE, Kim P, Fromm SJ, Brotman MA, Pine DS, Leibenluft E (2012) Striatal dysfunction during failed motor inhibition in children at risk for bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 38(2):127–133. doi: 10.1016/j.pnpbp.2012.02.014 PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Singh MK, Kelley RG, Howe ME, Reiss AL, Gotlib IH, Chang KD (2014) Reward processing in healthy offspring of parents with bipolar disorder. JAMA Psychiatry 71(10):1148–1156. doi: 10.1001/jamapsychiatry.2014.1031 PubMedCrossRefGoogle Scholar
  91. 91.
    Thermenos HW, Goldstein JM, Milanovic SM, Whitfield-Gabrieli S, Makris N, Laviolette P, Koch JK, Faraone SV, Tsuang MT, Buka SL, Seidman LJ (2010) An fMRI study of working memory in persons with bipolar disorder or at genetic risk for bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 153B(1):120–131. doi: 10.1002/ajmg.b.30964 PubMedGoogle Scholar
  92. 92.
    Brotman MA, Deveney CM, Thomas LA, Hinton KE, Yi JY, Pine DS, Leibenluft E (2014) Parametric modulation of neural activity during face emotion processing in unaffected youth at familial risk for bipolar disorder. Bipolar Disord 16(7):756–763. doi: 10.1111/bdi.12193 PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Roberts G, Green MJ, Breakspear M, McCormack C, Frankland A, Wright A, Levy F, Lenroot R, Chan HN, Mitchell PB (2013) Reduced inferior frontal gyrus activation during response inhibition to emotional stimuli in youth at high risk of bipolar disorder. Biol Psychiatry 74(1):55–61. doi: 10.1016/j.biopsych.2012.11.004 PubMedCrossRefGoogle Scholar
  94. 94.
    Whiteside SP, Port JD, Abramowitz JS (2004) A meta-analysis of functional neuroimaging in obsessive-compulsive disorder. Psychiatry Res 132(1):69–79PubMedCrossRefGoogle Scholar
  95. 95.
    Mataix-Cols D, Rosario-Campos MC, Leckman JF (2005) A multidimensional model of obsessive-compulsive disorder. Am J Psychiatry 162(2):228–238. doi: 10.1176/appi.ajp.162.2.228 PubMedCrossRefGoogle Scholar
  96. 96.
    Saxena S, Brody AL, Ho ML, Alborzian S, Ho MK, Maidment KM, Huang SC, Wu HM, Au SC, Baxter LR Jr (2001) Cerebral metabolism in major depression and obsessive-compulsive disorder occurring separately and concurrently. Biol Psychiatry 50(3):159–170PubMedCrossRefGoogle Scholar
  97. 97.
    van den Heuvel OA, Veltman DJ, Groenewegen HJ, Cath DC, van Balkom AJ, van Hartskamp J, Barkhof F, van Dyck R (2005) Frontal-striatal dysfunction during planning in obsessive-compulsive disorder. Arch Gen Psychiatry 62(3):301–309. doi: 10.1001/archpsyc.62.3.301 PubMedCrossRefGoogle Scholar
  98. 98.
    Remijnse PL, Nielen MMA, van Balkom AJLM, Cath DC, van Oppen P, Uylings HBM, Veltman DJ (2006) Reduced orbitofrontal-striatal activity on a reversal learning task in obsessive-compulsive disorder. Arch Gen Psychiatry 63(11):1225–1236PubMedCrossRefGoogle Scholar
  99. 99.
    Roth RM, Saykin AJ, Flashman LA, Pixley HS, West JD, Mamourian AC (2007) Event-related functional magnetic resonance imaging of response inhibition in obsessive-compulsive disorder. Biol Psychiatry 62(8):901–909PubMedCrossRefGoogle Scholar
  100. 100.
    Rauch SL, Whalen PJ, Shin LM, McInerney SC, Macklin ML, Lasko NB, Orr SP, Pitman RK (2000) Exaggerated amygdala response to masked facial stimuli in posttraumatic stress disorder: a functional MRI study. Biol Psychiatry 47(9):769–776PubMedCrossRefGoogle Scholar
  101. 101.
    Lanius RA, Williamson PC, Densmore M, Boksman K, Gupta MA, Neufeld RW, Gati JS, Menon RS (2001) Neural correlates of traumatic memories in posttraumatic stress disorder: a functional MRI investigation. Am J Psychiatry 158(11):1920–1922PubMedCrossRefGoogle Scholar
  102. 102.
    Shin LM, Whalen PJ, Pitman RK, Bush G, Macklin ML, Lasko NB, Orr SP, McInerney SC, Rauch SL (2001) An fMRI study of anterior cingulate function in posttraumatic stress disorder. Biol Psychiatry 50(12):932–942PubMedCrossRefGoogle Scholar
  103. 103.
    Hendler T, Rotshtein P, Yeshurun Y, Weizmann T, Kahn I, Ben-Bashat D, Malach R, Bleich A (2003) Sensing the invisible: differential sensitivity of visual cortex and amygdala to traumatic context. Neuroimage 19(3):587–600PubMedCrossRefGoogle Scholar
  104. 104.
    Lanius RA, Williamson PC, Hopper J, Densmore M, Boksman K, Gupta MA, Neufeld RWJ, Gati JS, Menon RS (2003) Recall of emotional states in posttraumatic stress disorder: an fMRI investigation. Biol Psychiatry 53(3):204–210PubMedCrossRefGoogle Scholar
  105. 105.
    Driessen M, Beblo T, Mertens M, Piefke M, Rullkoetter N, Silva-Saavedra A, Reddemann L, Rau H, Markowitsch HJ, Wulff H, Lange W, Woermann FG (2004) Posttraumatic stress disorder and fMRI activation patterns of traumatic memory in patients with borderline personality disorder. Biol Psychiatry 55(6):603–611PubMedCrossRefGoogle Scholar
  106. 106.
    Protopopescu X, Pan H, Tuescher O, Cloitre M, Goldstein M, Engelien W, Epstein J, Yang Y, Gorman J, LeDoux J, Silbersweig D, Stern E (2005) Differential time courses and specificity of amygdala activity in posttraumatic stress disorder subjects and normal control subjects. Biol Psychiatry 57(5):464–473PubMedCrossRefGoogle Scholar
  107. 107.
    Shin LM, Wright CI, Cannistraro PA, Wedig MM, McMullin K, Martis B, Macklin ML, Lasko NB, Cavanagh SR, Krangel TS, Orr SP, Pitman RK, Whalen PJ, Rauch SL (2005) A functional magnetic resonance imaging study of amygdala and medial prefrontal cortex responses to overtly presented fearful faces in posttraumatic stress disorder. Arch Gen Psychiatry 62(3):273–281PubMedCrossRefGoogle Scholar
  108. 108.
    Mitterschiffthaler MT, Ettinger U, Mehta MA, Mataix-Cols D, Williams SCR (2006) Applications of functional magnetic resonance imaging in psychiatry. J Magn Reson Imaging 23(6):851–861PubMedCrossRefGoogle Scholar
  109. 109.
    Saxena S, Brody AL, Schwartz JM, Baxter LR (1998) Neuroimaging and frontal-subcortical circuitry in obsessive-compulsive disorder. Br J Psychiatry Suppl 35:26–37PubMedGoogle Scholar
  110. 110.
    Purcell R, Maruff P, Kyrios M, Pantelis C (1998) Cognitive deficits in obsessive-compulsive disorder on tests of frontal-striatal function. Biol Psychiatry 43(5):348–357PubMedCrossRefGoogle Scholar
  111. 111.
    Gilbert AR, Moore GJ, Keshavan MS, Paulson LA, Narula V, Mac Master FP, Stewart CM, Rosenberg DR (2000) Decrease in thalamic volumes of pediatric patients with obsessive-compulsive disorder who are taking paroxetine. Arch Gen Psychiatry 57(5):449–456PubMedCrossRefGoogle Scholar
  112. 112.
    Kim JJ, Lee MC, Kim J, Kim IY, Kim SI, Han MH, Chang KH, Kwon JS (2001) Grey matter abnormalities in obsessive-compulsive disorder: statistical parametric mapping of segmented magnetic resonance images. Br J Psychiatry 179:330–334PubMedCrossRefGoogle Scholar
  113. 113.
    Lacerda ALT, Dalgalarrondo P, Caetano D, Camargo EE, Etchebehere ECSC, Soares JC (2003) Elevated thalamic and prefrontal regional cerebral blood flow in obsessive-compulsive disorder: a SPECT study. Psychiatry Res 123(2):125–134PubMedCrossRefGoogle Scholar
  114. 114.
    Saxena S, Rauch SL (2000) Functional neuroimaging and the neuroanatomy of obsessive-compulsive disorder. Psychiatr Clin North Am 23(3):563–586PubMedCrossRefGoogle Scholar
  115. 115.
    Rauch SL, Savage CR, Alpert NM, Fischman AJ, Jenike MA (1997) The functional neuroanatomy of anxiety: a study of three disorders using positron emission tomography and symptom provocation. Biol Psychiatry 42(6):446–452PubMedCrossRefGoogle Scholar
  116. 116.
    Hettema JM, Neale MC, Kendler KS (2001) A review and meta-analysis of the genetic epidemiology of anxiety disorders. Am J Psychiatry 158(10):1568–1578PubMedCrossRefGoogle Scholar
  117. 117.
    de Vries FE, de Wit SJ, Cath DC, van der Werf YD, van der Borden V, van Rossum TB, van Balkom AJ, van der Wee NJ, Veltman DJ, van den Heuvel OA (2014) Compensatory frontoparietal activity during working memory: an endophenotype of obsessive-compulsive disorder. Biol Psychiatry 76(11):878–887. doi: 10.1016/j.biopsych.2013.11.021 PubMedCrossRefGoogle Scholar
  118. 118.
    de Wit SJ, de Vries FE, van der Werf YD, Cath DC, Heslenfeld DJ, Veltman EM, van Balkom AJ, Veltman DJ, van den Heuvel OA (2012) Presupplementary motor area hyperactivity during response inhibition: a candidate endophenotype of obsessive-compulsive disorder. Am J Psychiatry 169(10):1100–1108. doi: 10.1176/appi.ajp.2012.12010073 PubMedCrossRefGoogle Scholar
  119. 119.
    Charney DS, Deutch AY, Krystal JH, Southwick SM, Davis M (1993) Psychobiologic mechanisms of posttraumatic stress disorder. Arch Gen Psychiatry 50(4):295–305PubMedCrossRefGoogle Scholar
  120. 120.
    Charney DS (2004) Psychobiological mechanisms of resilience and vulnerability: implications for successful adaptation to extreme stress. Am J Psychiatry 161(2):195–216PubMedCrossRefGoogle Scholar
  121. 121.
    Quirk GJ, Gehlert DR (2003) Inhibition of the amygdala: key to pathological states? Ann N Y Acad Sci 985:263–272PubMedCrossRefGoogle Scholar
  122. 122.
    Stein MB, Simmons AN, Feinstein JS, Paulus MP (2007) Increased amygdala and insula activation during emotion processing in anxiety-prone subjects. Am J Psychiatry 164(2):318–327PubMedCrossRefGoogle Scholar
  123. 123.
    Geuze E, Vermetten E, Bremner JD (2005) MR-based in vivo hippocampal volumetrics: 2. Findings in neuropsychiatric disorders. Mol Psychiatry 10(2):160–184PubMedCrossRefGoogle Scholar
  124. 124.
    Bremner JD (2002) Neuroimaging of childhood trauma. Semin Clin Neuropsychiatry 7(2):104–112PubMedCrossRefGoogle Scholar
  125. 125.
    Bremner JD, Vythilingam M, Vermetten E, Southwick SM, McGlashan T, Nazeer A, Khan S, Vaccarino LV, Soufer R, Garg PK, Ng CK, Staib LH, Duncan JS, Charney DS (2003) MRI and PET study of deficits in hippocampal structure and function in women with childhood sexual abuse and posttraumatic stress disorder. Am J Psychiatry 160(5):924–932PubMedCrossRefGoogle Scholar
  126. 126.
    Gilbertson MW, Shenton ME, Ciszewski A, Kasai K, Lasko NB, Orr SP, Pitman RK (2002) Smaller hippocampal volume predicts pathologic vulnerability to psychological trauma. Nat Neurosci 5(11):1242–1247PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Whalen PJ, Rauch SL, Etcoff NL, McInerney SC, Lee MB, Jenike MA (1998) Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. J Neurosci 18(1):411–418PubMedGoogle Scholar
  128. 128.
    Lanius RA, Williamson PC, Bluhm RL, Densmore M, Boksman K, Neufeld RWJ, Gati JS, Menon RS (2005) Functional connectivity of dissociative responses in posttraumatic stress disorder: a functional magnetic resonance imaging investigation. Biol Psychiatry 57(8):873–884PubMedCrossRefGoogle Scholar
  129. 129.
    Vermetten E, Vythilingam M, Southwick SM, Charney DS, Bremner JD (2003) Long-term treatment with paroxetine increases verbal declarative memory and hippocampal volume in posttraumatic stress disorder. Biol Psychiatry 54(7):693–702PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Pitman RK, Shin LM, Rauch SL (2001) Investigating the pathogenesis of posttraumatic stress disorder with neuroimaging. J Clin Psychiatry 62(Suppl 17):47–54PubMedGoogle Scholar
  131. 131.
    Villarreal G, King CY (2001) Brain imaging in posttraumatic stress disorder. Semin Clin Neuropsychiatry 6(2):131–145PubMedCrossRefGoogle Scholar
  132. 132.
    Morgan MA, LeDoux JE (1995) Differential contribution of dorsal and ventral medial prefrontal cortex to the acquisition and extinction of conditioned fear in rats. Behav Neurosci 109(4):681–688PubMedCrossRefGoogle Scholar
  133. 133.
    Quirk GJ, Russo GK, Barron JL, Lebron K (2000) The role of ventromedial prefrontal cortex in the recovery of extinguished fear. J Neurosci 20(16):6225–6231PubMedGoogle Scholar
  134. 134.
    Santini E, Ge H, Ren K, Pena de Ortiz S, Quirk GJ (2004) Consolidation of fear extinction requires protein synthesis in the medial prefrontal cortex. J Neurosci 24(25):5704–5710PubMedCrossRefGoogle Scholar
  135. 135.
    Williams LM, Kemp AH, Felmingham K, Barton M, Olivieri G, Peduto A, Gordon E, Bryant RA (2006) Trauma modulates amygdala and medial prefrontal responses to consciously attended fear. Neuroimage 29(2):347–357PubMedCrossRefGoogle Scholar
  136. 136.
    Golier JA, Yehuda R, Lupien SJ, Harvey PD, Grossman R, Elkin A (2002) Memory performance in Holocaust survivors with posttraumatic stress disorder. Am J Psychiatry 159(10):1682–1688PubMedCrossRefGoogle Scholar
  137. 137.
    Rauch SL, Shin LM, Phelps EA (2006) Neurocircuitry models of posttraumatic stress disorder and extinction: human neuroimaging research—past, present, and future. Biol Psychiatry 60(4):376–382PubMedCrossRefGoogle Scholar
  138. 138.
    Shin LM, Shin PS, Heckers S, Krangel TS, Macklin ML, Orr SP, Lasko N, Segal E, Makris N, Richert K, Levering J, Schacter DL, Alpert NM, Fischman AJ, Pitman RK, Rauch SL (2004) Hippocampal function in posttraumatic stress disorder. Hippocampus 14(3):292–300PubMedCrossRefGoogle Scholar
  139. 139.
    Vermetten E, Bremner JD (2002) Circuits and systems in stress. II. Applications to neurobiology and treatment in posttraumatic stress disorder. Depress Anxiety 16(1):14–38PubMedCrossRefGoogle Scholar
  140. 140.
    Bremner JD, Narayan M, Staib LH, Southwick SM, McGlashan T, Charney DS (1999) Neural correlates of memories of childhood sexual abuse in women with and without posttraumatic stress disorder. Am J Psychiatry 156(11):1787–1795PubMedPubMedCentralGoogle Scholar
  141. 141.
    Shin LM, McNally RJ, Kosslyn SM, Thompson WL, Rauch SL, Alpert NM, Metzger LJ, Lasko NB, Orr SP, Pitman RK (1999) Regional cerebral blood flow during script-driven imagery in childhood sexual abuse-related PTSD: a PET investigation. Am J Psychiatry 156(4):575–584PubMedGoogle Scholar
  142. 142.
    Semple WE, Goyer PF, McCormick R, Donovan B, Muzic RF, Rugle L, McCutcheon K, Lewis C, Liebling D, Kowaliw S, Vapenik K, Semple MA, Flener CR, Schulz SC (2000) Higher brain blood flow at amygdala and lower frontal cortex blood flow in PTSD patients with comorbid cocaine and alcohol abuse compared with normals. Psychiatry 63(1):65–74PubMedCrossRefGoogle Scholar
  143. 143.
    Shin LM, Bush G, Milad MR, Lasko NB, Brohawn KH, Hughes KC, Macklin ML, Gold AL, Karpf RD, Orr SP, Rauch SL, Pitman RK (2011) Exaggerated activation of dorsal anterior cingulate cortex during cognitive interference: a monozygotic twin study of posttraumatic stress disorder. Am J Psychiatry 168(9):979–985. doi: 10.1176/appi.ajp.2011.09121812 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Erin L. Habecker
    • 1
  • Melissa A. Daniels
    • 1
  • Elisa Canu
    • 2
  • Maria A. Rocca
    • 2
    • 3
  • Massimo Filippi
    • 2
    • 3
  • Perry F. Renshaw
    • 4
    Email author
  1. 1.Brain Imaging CenterMcLean Hospital, Harvard Medical SchoolBelmontUSA
  2. 2.Neuroimaging Research Unit, Institute of Experimental Neurology, Division of NeuroscienceSan Raffaele Scientific Institute and Vita-Salute San Raffaele UniversityMilanItaly
  3. 3.Department of Neurology, Division of NeuroscienceSan Raffaele Scientific Institute and Vita-Salute San Raffaele UniversityMilanItaly
  4. 4.Brain Institute, University of UtahSalt Lake CityUSA

Personalised recommendations