fMRI in Cerebrovascular Disorders

  • Nick S. WardEmail author
Part of the Neuromethods book series (NM, volume 119)


Stroke is a major cause of long-term disability worldwide. One of the key factors underpinning recovery of function is reorganization of surviving neural networks. Noninvasive techniques such as fMRI allow this reorganization to be studied in humans. However, the design of experiments involving patients with impairment requires careful consideration and is often constrained. Difficulty with some tasks can lead to a number of performance confounds, and so tasks and task parameters that avoid or minimize this should be selected. Furthermore, when studying patients with cerebrovascular disease, it is important to consider the possibility that the blood oxygen level-dependent signal may be altered and affect interpretation of results. Despite these potential problems, careful experimental design can provide real insights into system-level reorganization after stroke and how it is related to functional recovery. Currently, results suggest that functionally relevant reorganization does occur in cerebral networks in human stroke patients. For example, it is apparent that initial attempts to move a paretic limb following stroke are associated with widespread activity within the distributed motor system in both cerebral hemispheres. This reliance on nonprimary motor output pathways is unlikely to support full recovery, but improved efficiency of the surviving networks is associated with behavioral gains. This reorganization can only occur in structurally and functionally intact brain regions. Understanding the dynamic process of system-level reorganization will allow greater understanding of the mechanisms of recovery and potentially improve our ability to deliver effective restorative therapy.

Key words

fMRI Stroke Blood oxygen level-dependent Motor cortex Premotor cortex Plasticity Rehabilitation 


  1. 1.
    Hoffman C, Rice D, Sung HY (1996) Persons with chronic conditions. Their prevalence and costs. JAMA 276(18):1473–1479PubMedCrossRefGoogle Scholar
  2. 2.
    Office of Population Censuses and Surveys (1988) OPCS surveys of disability in Great Britain. I. The prevalence of disability among adults. HMSO, LondonGoogle Scholar
  3. 3.
    Wade DT, Hewer RL (1987) Epidemiology of some neurological diseases with special reference to work load on the NHS. Int Rehabil Med 8(3):129–137PubMedCrossRefGoogle Scholar
  4. 4.
    Wade DT (1989) Measuring arm impairment and disability after stroke. Int Disabil Stud 11(2):89–92PubMedCrossRefGoogle Scholar
  5. 5.
    Nichols-Larsen DS, Clark PC, Zeringue A, Greenspan A, Blanton S (2005) Factors influencing stroke survivors’ quality of life during subacute recovery. Stroke 36(7):1480–1484PubMedCrossRefGoogle Scholar
  6. 6.
    Wyller TB, Sveen U, Sodring KM, Pettersen AM, Bautz-Holter E (1997) Subjective wellbeing one year after stroke. Clin Rehabil 11(2):139–145PubMedCrossRefGoogle Scholar
  7. 7.
    Stroke Unit Trialists’ Collaboration (2000) Organised inpatient (stroke unit) care for stroke (Cochrane Review). The Cochrane Library, Issue 2. Oxford: Update SoftwareGoogle Scholar
  8. 8.
    Ward NS, Cohen LG (2004) Mechanisms underlying recovery of motor function after stroke. Arch Neurol 61(12):1844–1848PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    The Academy of Medical Sciences (2004) Restoring neurological function: putting the neurosciences to work in neurorehabilitation. Academy of Medical Sciences, LondonGoogle Scholar
  10. 10.
    Loubinoux I, Carel C, Pariente J, Dechaumont S, Albucher JF, Marque P et al (2003) Correlation between cerebral reorganization and motor recovery after subcortical infarcts. Neuroimage 20(4):2166–2180PubMedCrossRefGoogle Scholar
  11. 11.
    Tombari D, Loubinoux I, Pariente J, Gerdelat A, Albucher JF, Tardy J et al (2004) A longitudinal fMRI study: in recovering and then in clinically stable sub-cortical stroke patients. Neuroimage 23(3):827–839PubMedCrossRefGoogle Scholar
  12. 12.
    Ward NS, Brown MM, Thompson AJ, Frackowiak RS (2006) Longitudinal changes in cerebral response to proprioceptive input in individual patients after stroke: an FMRI study. Neurorehabil Neural Repair 20(3):398–405PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Lee A, Kannan V, Hillis AE (2006) The contribution of neuroimaging to the study of language and aphasia. Neuropsychol Rev 16(4):171–183PubMedCrossRefGoogle Scholar
  14. 14.
    Price CJ, Crinion J (2005) The latest on functional imaging studies of aphasic stroke. Curr Opin Neurol 18(4):429–434PubMedCrossRefGoogle Scholar
  15. 15.
    Wise RJ (2003) Language systems in normal and aphasic human subjects: functional imaging studies and inferences from animal studies. Br Med Bull 65:95–119PubMedCrossRefGoogle Scholar
  16. 16.
    Buxton RB (2002) An introduction to functional magnetic resonance imaging: principles and techniques. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  17. 17.
    Magistretti PJ, Pellerin L (1999) Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Philos Trans R Soc Lond B Biol Sci 354(1387):1155–1163PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Magistretti PJ, Pellerin L, Rothman DL, Shulman RG (1999) Energy on demand. Science 283(5401):496–497PubMedCrossRefGoogle Scholar
  19. 19.
    Iadecola C (2004) Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 5(5):347–360PubMedCrossRefGoogle Scholar
  20. 20.
    Attwell D, Iadecola C (2002) The neural basis of functional brain imaging signals. Trends Neurosci 25(12):621–625PubMedCrossRefGoogle Scholar
  21. 21.
    Friston KJ, Josephs O, Rees G, Turner R (1998) Nonlinear event-related responses in fMRI. Magn Reson Med 39(1):41–52PubMedCrossRefGoogle Scholar
  22. 22.
    Newton J, Sunderland A, Butterworth SE, Peters AM, Peck KK, Gowland PA (2002) A pilot study of event-related functional magnetic resonance imaging of monitored wrist movements in patients with partial recovery. Stroke 33(12):2881–2887PubMedCrossRefGoogle Scholar
  23. 23.
    Pineiro R, Pendlebury S, Johansen-Berg H, Matthews PM (2001) Functional MRI detects posterior shifts in primary sensorimotor cortex activation after stroke: evidence of local adaptive reorganization? Stroke 32(5):1134–1139PubMedCrossRefGoogle Scholar
  24. 24.
    Carusone LM, Srinivasan J, Gitelman DR, Mesulam MM, Parrish TB (2002) Hemodynamic response changes in cerebrovascular disease: implications for functional MR imaging. AJNR Am J Neuroradiol 23(7):1222–1228PubMedGoogle Scholar
  25. 25.
    Hamzei F, Knab R, Weiller C, Rother J (2003) The influence of extra- and intracranial artery disease on the BOLD signal in fMRI. Neuroimage 20(2):1393–1399PubMedCrossRefGoogle Scholar
  26. 26.
    Rossini PM, Altamura C, Ferretti A, Vernieri F, Zappasodi F, Caulo M et al (2004) Does cerebrovascular disease affect the coupling between neuronal activity and local haemodynamics? Brain 127(Pt 1):99–110PubMedCrossRefGoogle Scholar
  27. 27.
    Rother J, Knab R, Hamzei F, Fiehler J, Reichenbach JR, Buchel C et al (2002) Negative dip in BOLD fMRI is caused by blood flow-oxygen consumption uncoupling in humans. Neuroimage 15(1):98–102PubMedCrossRefGoogle Scholar
  28. 28.
    Krainik A, Hund-Georgiadis M, Zysset S, von Cramon DY (2005) Regional impairment of cerebrovascular reactivity and BOLD signal in adults after stroke. Stroke 36(6):1146–1152PubMedCrossRefGoogle Scholar
  29. 29.
    Murata Y, Sakatani K, Hoshino T, Fujiwara N, Kano T, Nakamura S et al (2006) Effects of cerebral ischemia on evoked cerebral blood oxygenation responses and BOLD contrast functional MRI in stroke patients. Stroke 37(10):2514–2520PubMedCrossRefGoogle Scholar
  30. 30.
    Ward NS, Brown MM, Thompson AJ, Frackowiak RS (2003) Neural correlates of outcome after stroke: a cross-sectional fMRI study. Brain 126(Pt 6):1430–1448PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Ward NS, Newton JM, Swayne OB, Lee L, Thompson AJ, Greenwood RJ et al (2006) Motor system activation after subcortical stroke depends on corticospinal system integrity. Brain 129(Pt 3):809–819PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Ward NS, Newton JM, Swayne OB, Lee L, Frackowiak RS, Thompson AJ et al (2007) The relationship between brain activity and peak grip force is modulated by corticospinal system integrity after subcortical stroke. Eur J Neurosci 25(6):1865–1873PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    D’Esposito M, Zarahn E, Aguirre GK, Rypma B (1999) The effect of normal aging on the coupling of neural activity to the bold hemodynamic response. Neuroimage 10(1):6–14PubMedCrossRefGoogle Scholar
  34. 34.
    Ward NS, Swayne OB, Newton JM (2008) Age-dependent changes in the neural correlates of force modulation: an fMRI study. Neurobiol Aging 29(9):1434–1446PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Pollmann S, Dove A, Yves von Cramon D, Wiggins CJ (2000) Event-related fMRI: comparison of conditions with varying BOLD overlap. Hum Brain Mapp 9(1):26–37PubMedCrossRefGoogle Scholar
  36. 36.
    Wager TD, Vazquez A, Hernandez L, Noll DC (2005) Accounting for nonlinear BOLD effects in fMRI: parameter estimates and a model for prediction in rapid event-related studies. Neuroimage 25(1):206–218PubMedCrossRefGoogle Scholar
  37. 37.
    Kim JA, Eliassen JC, Sanes JN (2005) Movement quantity and frequency coding in human motor areas. J Neurophysiol 94(4):2504–2511PubMedCrossRefGoogle Scholar
  38. 38.
    Cao Y, D’Olhaberriague L, Vikingstad EM, Levine SR, Welch KM (1998) Pilot study of functional MRI to assess cerebral activation of motor function after poststroke hemiparesis. Stroke 29(1):112–122PubMedCrossRefGoogle Scholar
  39. 39.
    Chollet F, DiPiero V, Wise RJ, Brooks DJ, Dolan RJ, Frackowiak RS (1991) The functional anatomy of motor recovery after stroke in humans: a study with positron emission tomography. Ann Neurol 29(1):63–71PubMedCrossRefGoogle Scholar
  40. 40.
    Cramer SC, Nelles G, Benson RR, Kaplan JD, Parker RA, Kwong KK et al (1997) A functional MRI study of subjects recovered from hemiparetic stroke. Stroke 28(12):2518–2527PubMedCrossRefGoogle Scholar
  41. 41.
    Weiller C, Chollet F, Friston KJ, Wise RJ, Frackowiak RS (1992) Functional reorganization of the brain in recovery from striatocapsular infarction in man. Ann Neurol 31(5):463–472PubMedCrossRefGoogle Scholar
  42. 42.
    Weiller C, Ramsay SC, Wise RJ, Friston KJ, Frackowiak RS (1993) Individual patterns of functional reorganization in the human cerebral cortex after capsular infarction. Ann Neurol 33(2):181–189PubMedCrossRefGoogle Scholar
  43. 43.
    Strick PL (1988) Anatomical organization of multiple motor areas in the frontal lobe: implications for recovery of function. Adv Neurol 47:293–312PubMedGoogle Scholar
  44. 44.
    Porter R, Lemon RN (1993) Corticospinal function and voluntary movement. Oxford University Press, Oxford, UKGoogle Scholar
  45. 45.
    Dum RP, Strick PL (1996) Spinal cord terminations of the medial wall motor areas in macaque monkeys. J Neurosci 16(20):6513–6525PubMedGoogle Scholar
  46. 46.
    Rouiller EM, Moret V, Tanne J, Boussaoud D (1996) Evidence for direct connections between the hand region of the supplementary motor area and cervical motoneurons in the macaque monkey. Eur J Neurosci 8(5):1055–1059PubMedCrossRefGoogle Scholar
  47. 47.
    Calautti C, Leroy F, Guincestre JY, Baron JC (2001) Dynamics of motor network overactivation after striatocapsular stroke: a longitudinal PET study using a fixed-performance paradigm. Stroke 32(11):2534–2542PubMedCrossRefGoogle Scholar
  48. 48.
    Calautti C, Leroy F, Guincestre JY, Baron JC (2003) Displacement of primary sensorimotor cortex activation after subcortical stroke: a longitudinal PET study with clinical correlation. Neuroimage 19(4):1650–1654PubMedCrossRefGoogle Scholar
  49. 49.
    Cramer SC, Shah R, Juranek J, Crafton KR, Le V (2006) Activity in the peri-infarct rim in relation to recovery from stroke. Stroke 37(1):111–115PubMedCrossRefGoogle Scholar
  50. 50.
    Feydy A, Carlier R, Roby-Brami A, Bussel B, Cazalis F, Pierot L et al (2002) Longitudinal study of motor recovery after stroke: recruitment and focusing of brain activation. Stroke 33(6):1610–1617PubMedCrossRefGoogle Scholar
  51. 51.
    Johansen-Berg H, Rushworth MF, Bogdanovic MD, Kischka U, Wimalaratna S, Matthews PM (2002) The role of ipsilateral premotor cortex in hand movement after stroke. Proc Natl Acad Sci U S A 99(22):14518–14523PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Seitz RJ, Hoflich P, Binkofski F, Tellmann L, Herzog H, Freund HJ (1998) Role of the premotor cortex in recovery from middle cerebral artery infarction. Arch Neurol 55(8):1081–1088PubMedCrossRefGoogle Scholar
  53. 53.
    Ward NS, Brown MM, Thompson AJ, Frackowiak RS (2004) The influence of time after stroke on brain activations during a motor task. Ann Neurol 55(6):829–834PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Dancause N, Barbay S, Frost SB, Plautz EJ, Stowe AM, Friel KM et al (2006) Ipsilateral connections of the ventral premotor cortex in a new world primate. J Comp Neurol 495(4):374–390PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Dancause N, Barbay S, Frost SB, Mahnken JD, Nudo RJ (2007) Interhemispheric connections of the ventral premotor cortex in a new world primate. J Comp Neurol 505(6):701–715PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Dum RP, Strick PL (1991) The origin of corticospinal projections from the premotor areas in the frontal lobe. J Neurosci 11(3):667–689PubMedGoogle Scholar
  57. 57.
    He SQ, Dum RP, Strick PL (1993) Topographic organization of corticospinal projections from the frontal lobe: motor areas on the lateral surface of the hemisphere. J Neurosci 13(3):952–980PubMedGoogle Scholar
  58. 58.
    He SQ, Dum RP, Strick PL (1995) Topographic organization of corticospinal projections from the frontal lobe: motor areas on the medial surface of the hemisphere. J Neurosci 15(5 Pt 1):3284–3306PubMedGoogle Scholar
  59. 59.
    Boudrias MH, Belhaj-Saif A, Park MC, Cheney PD (2006) Contrasting properties of motor output from the supplementary motor area and primary motor cortex in rhesus macaques. Cereb Cortex 16(5):632–638PubMedCrossRefGoogle Scholar
  60. 60.
    Maier MA, Armand J, Kirkwood PA, Yang HW, Davis JN, Lemon RN (2002) Differences in the corticospinal projection from primary motor cortex and supplementary motor area to macaque upper limb motoneurons: an anatomical and electrophysiological study. Cereb Cortex 12(3):281–296PubMedCrossRefGoogle Scholar
  61. 61.
    Baker SN, Zaaimi B, Fisher KM, Edgley SA, Soteropoulos DS (2015) Pathways mediating functional recovery. Prog Brain Res 218:389–412PubMedCrossRefGoogle Scholar
  62. 62.
    Dettmers C, Fink GR, Lemon RN, Stephan KM, Passingham RE, Silbersweig D et al (1995) Relation between cerebral activity and force in the motor areas of the human brain. J Neurophysiol 74(2):802–815PubMedGoogle Scholar
  63. 63.
    Thickbroom GW, Phillips BA, Morris I, Byrnes ML, Sacco P, Mastaglia FL (1999) Differences in functional magnetic resonance imaging of sensorimotor cortex during static and dynamic finger flexion. Exp Brain Res 126(3):431–438PubMedCrossRefGoogle Scholar
  64. 64.
    Ward NS, Frackowiak RS (2003) Age-related changes in the neural correlates of motor performance. Brain 126(Pt 4):873–888PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Fridman EA, Hanakawa T, Chung M, Hummel F, Leiguarda RC, Cohen LG (2004) Reorganization of the human ipsilesional premotor cortex after stroke. Brain 127(Pt 4):747–758PubMedCrossRefGoogle Scholar
  66. 66.
    Lotze M, Markert J, Sauseng P, Hoppe J, Plewnia C, Gerloff C (2006) The role of multiple contralesional motor areas for complex hand movements after internal capsular lesion. J Neurosci 26(22):6096–6102PubMedCrossRefGoogle Scholar
  67. 67.
    Grefkes C, Fink GR (2014) Connectivity-based approaches in stroke and recovery of function. Lancet Neurol 13(2):206–216PubMedCrossRefGoogle Scholar
  68. 68.
    Carter AR, Patel KR, Astafiev SV, Snyder AZ, Rengachary J, Strube MJ et al (2012) Upstream dysfunction of somatomotor functional connectivity after corticospinal damage in stroke. Neurorehabil Neural Repair 26(1):7–19PubMedCrossRefGoogle Scholar
  69. 69.
    Carter AR, Astafiev SV, Lang CE, Connor LT, Rengachary J, Strube MJ et al (2010) Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke. Ann Neurol 67(3):365–375PubMedPubMedCentralGoogle Scholar
  70. 70.
    Grefkes C, Nowak DA, Eickhoff SB, Dafotakis M, Küst J, Karbe H et al (2008) Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging. Ann Neurol 63(2):236–246PubMedCrossRefGoogle Scholar
  71. 71.
    Bestmann S, Swayne O, Blankenburg F, Ruff CC, Teo J, Weiskopf N et al (2010) The role of contralesional dorsal premotor cortex after stroke as studied with concurrent TMS-fMRI. J Neurosci 30(36):11926–11937PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Zemke AC, Heagerty PJ, Lee C, Cramer SC (2003) Motor cortex organization after stroke is related to side of stroke and level of recovery. Stroke 34(5):e23–e28PubMedCrossRefGoogle Scholar
  73. 73.
    Crafton KR, Mark AN, Cramer SC (2003) Improved understanding of cortical injury by incorporating measures of functional anatomy. Brain 126(Pt 7):1650–1659PubMedCrossRefGoogle Scholar
  74. 74.
    Marshall RS, Perera GM, Lazar RM, Krakauer JW, Constantine RC, DeLaPaz RL (2000) Evolution of cortical activation during recovery from corticospinal tract infarction. Stroke 31(3):656–661PubMedCrossRefGoogle Scholar
  75. 75.
    Small SL, Hlustik P, Noll DC, Genovese C, Solodkin A (2002) Cerebellar hemispheric activation ipsilateral to the paretic hand correlates with functional recovery after stroke. Brain 125(Pt 7):1544–1557PubMedCrossRefGoogle Scholar
  76. 76.
    Ward NS, Brown MM, Thompson AJ, Frackowiak RS (2003) Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain 126(Pt 11):2476–2496PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Kleim JA, Chan S, Pringle E, Schallert K, Procaccio V, Jimenez R et al (2006) BDNF val66met polymorphism is associated with modified experience-dependent plasticity in human motor cortex. Nat Neurosci 9(6):735–737PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Wellcome Trust Centre for Neuroimaging, Institute of NeurologyUniversity College LondonLondonUK

Personalised recommendations