Application of fMRI to Multiple Sclerosis and Other White Matter Disorders

  • Massimo FilippiEmail author
  • Maria A. Rocca
Part of the Neuromethods book series (NM, volume 119)


The variable effectiveness of reparative and recovery mechanisms following tissue damage is among the factors that might contribute to explain, at least partially, the paucity of the correlation between clinical and magnetic resonance imaging (MRI) findings in patients with white matter disorders. Among the mechanisms of recovery, brain plasticity is likely to be one of the most important with several possible different substrates (including increased axonal expression of sodium channels, synaptic changes, increased recruitment of parallel existing pathways or “latent” connections, and reorganization of distant sites). The application of fMRI has shown that plastic cortical changes do occur after white matter injury of different etiology, that such changes are related to the extent of white matter damage, and that they can contribute in limiting the clinical consequences of brain damage. Conversely, the failure or exhaustion of the adaptive properties of the cerebral cortex might be among the factors responsible for the accumulation of “fixed” neurological deficits in patients with white matter disorders.

Key words

Multiple sclerosis Functional magnetic resonance imaging White matter Adaptation Maladaptation Myelitis Vasculitides 


  1. 1.
    Filippi M, Rocca MA (2004) Magnetization transfer magnetic resonance imaging in the assessment of neurological diseases. J Neuroimaging 14(4):303–313PubMedCrossRefGoogle Scholar
  2. 2.
    Filippi M, Rocca MA, Comi G (2003) The use of quantitative magnetic-resonance-based techniques to monitor the evolution of multiple sclerosis. Lancet Neurol 2(6):337–346PubMedCrossRefGoogle Scholar
  3. 3.
    Hesselink JR (2006) Differential diagnostic approach to MR imaging of white matter diseases. Top Magn Reson Imaging 17:243–263PubMedCrossRefGoogle Scholar
  4. 4.
    Rocca MA, Filippi M (2006) Functional MRI to study brain plasticity in clinical neurology. Neurol Sci 27(Suppl 1):S24–S26PubMedCrossRefGoogle Scholar
  5. 5.
    Rocca MA, Filippi M (2007) Functional MRI in multiple sclerosis. J Neuroimaging 17(Suppl 1):36S–41SPubMedCrossRefGoogle Scholar
  6. 6.
    Waxman SG (1998) Demyelinating diseases—new pathological insights, new therapeutic targets. N Engl J Med 338(5):323–325PubMedGoogle Scholar
  7. 7.
    Clanet M, Berry I, Boulanouar K (1997) Functional imaging in multiple sclerosis. Int MS J 4:26–32Google Scholar
  8. 8.
    Rombouts SA et al (1998) Visual activation patterns in patients with optic neuritis: an fMRI pilot study. Neurology 50(6):1896–1899PubMedCrossRefGoogle Scholar
  9. 9.
    Lee M et al (2000) The motor cortex shows adaptive functional changes to brain injury from multiple sclerosis. Ann Neurol 47(5):606–613PubMedCrossRefGoogle Scholar
  10. 10.
    Reddy H et al (2000) Relating axonal injury to functional recovery in MS. Neurology 54(1):236–239PubMedCrossRefGoogle Scholar
  11. 11.
    Reddy H et al (2000) Evidence for adaptive functional changes in the cerebral cortex with axonal injury from multiple sclerosis. Brain 123(Pt 11):2314–2320PubMedCrossRefGoogle Scholar
  12. 12.
    Werring DJ et al (2000) Recovery from optic neuritis is associated with a change in the distribution of cerebral response to visual stimulation: a functional magnetic resonance imaging study. J Neurol Neurosurg Psychiatry 68(4):441–449PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Langkilde AR et al (2002) Functional MRI of the visual cortex and visual testing in patients with previous optic neuritis. Eur J Neurol 9(3):277–286PubMedCrossRefGoogle Scholar
  14. 14.
    Toosy AT et al (2002) Functional magnetic resonance imaging of the cortical response to photic stimulation in humans following optic neuritis recovery. Neurosci Lett 330(3):255–259PubMedCrossRefGoogle Scholar
  15. 15.
    Russ MO et al (2002) Functional magnetic resonance imaging in acute unilateral optic neuritis. J Neuroimaging 12(4):339–350PubMedCrossRefGoogle Scholar
  16. 16.
    Toosy AT et al (2005) Adaptive cortical plasticity in higher visual areas after acute optic neuritis. Ann Neurol 57(5):622–633PubMedCrossRefGoogle Scholar
  17. 17.
    Levin N et al (2006) Normal and abnormal fMRI activation patterns in the visual cortex after recovery from optic neuritis. Neuroimage 33(4):1161–1168PubMedCrossRefGoogle Scholar
  18. 18.
    Korsholm K et al (2007) Recovery from optic neuritis: an ROI-based analysis of LGN and visual cortical areas. Brain 130(Pt 5):1244–1253PubMedCrossRefGoogle Scholar
  19. 19.
    Jenkins T et al (2010) Dissecting structure-function interactions in acute optic neuritis to investigate neuroplasticity. Hum Brain Mapp 31(2):276–286PubMedGoogle Scholar
  20. 20.
    Jenkins TM et al (2010) Neuroplasticity predicts outcome of optic neuritis independent of tissue damage. Ann Neurol 67(1):99–113PubMedCrossRefGoogle Scholar
  21. 21.
    Filippi M et al (2002) Correlations between structural CNS damage and functional MRI changes in primary progressive MS. Neuroimage 15(3):537–546PubMedCrossRefGoogle Scholar
  22. 22.
    Rocca MA et al (2002) Adaptive functional changes in the cerebral cortex of patients with nondisabling multiple sclerosis correlate with the extent of brain structural damage. Ann Neurol 51(3):330–339PubMedCrossRefGoogle Scholar
  23. 23.
    Rocca MA et al (2003) Evidence for axonal pathology and adaptive cortical reorganization in patients at presentation with clinically isolated syndromes suggestive of multiple sclerosis. Neuroimage 18(4):847–855PubMedCrossRefGoogle Scholar
  24. 24.
    Rocca MA et al (2003) A functional magnetic resonance imaging study of patients with secondary progressive multiple sclerosis. Neuroimage 19(4):1770–1777PubMedCrossRefGoogle Scholar
  25. 25.
    Rocca MA et al (2003) Functional cortical changes in patients with multiple sclerosis and nonspecific findings on conventional magnetic resonance imaging scans of the brain. Neuroimage 19(3):826–836PubMedCrossRefGoogle Scholar
  26. 26.
    Reddy H et al (2002) Functional brain reorganization for hand movement in patients with multiple sclerosis: defining distinct effects of injury and disability. Brain 125(Pt 12):2646–2657PubMedCrossRefGoogle Scholar
  27. 27.
    Filippi M et al (2004) Simple and complex movement-associated functional MRI changes in patients at presentation with clinically isolated syndromes suggestive of multiple sclerosis. Hum Brain Mapp 21(2):108–117PubMedCrossRefGoogle Scholar
  28. 28.
    Rocca MA et al (2005) Cortical adaptation in patients with MS: a cross-sectional functional MRI study of disease phenotypes. Lancet Neurol 4(10):618–626PubMedCrossRefGoogle Scholar
  29. 29.
    Pantano P et al (2002) Cortical motor reorganization after a single clinical attack of multiple sclerosis. Brain 125(Pt 7):1607–1615PubMedCrossRefGoogle Scholar
  30. 30.
    Pantano P et al (2002) Contribution of corticospinal tract damage to cortical motor reorganization after a single clinical attack of multiple sclerosis. Neuroimage 17(4):1837–1843PubMedCrossRefGoogle Scholar
  31. 31.
    Rocca MA et al (2004) Pyramidal tract lesions and movement-associated cortical recruitment in patients with MS. Neuroimage 23(1):141–147PubMedCrossRefGoogle Scholar
  32. 32.
    Lowe MJ et al (2002) Multiple sclerosis: low-frequency temporal blood oxygen level-dependent fluctuations indicate reduced functional connectivity initial results. Radiology 224(1):184–192PubMedCrossRefGoogle Scholar
  33. 33.
    Rocca MA et al (2002) Evidence for widespread movement-associated functional MRI changes in patients with PPMS. Neurology 58(6):866–872PubMedCrossRefGoogle Scholar
  34. 34.
    Rocca MA et al (2003) Cord damage elicits brain functional reorganization after a single episode of myelitis. Neurology 61(8):1078–1085PubMedCrossRefGoogle Scholar
  35. 35.
    Rocca MA et al (2004) A functional MRI study of movement-associated cortical changes in patients with Devic’s neuromyelitis optica. Neuroimage 21(3):1061–1068PubMedCrossRefGoogle Scholar
  36. 36.
    Rocca MA et al (2005) A widespread pattern of cortical activations in patients at presentation with clinically isolated symptoms is associated with evolution to definite multiple sclerosis. AJNR Am J Neuroradiol 26(5):1136–1139PubMedGoogle Scholar
  37. 37.
    Rocca MA et al (2007) fMRI changes in relapsing-remitting multiple sclerosis patients complaining of fatigue after IFNbeta-1a injection. Hum Brain Mapp 28(5):373–382PubMedCrossRefGoogle Scholar
  38. 38.
    Mezzapesa DM et al (2008) Functional cortical changes of the sensorimotor network are associated with clinical recovery in multiple sclerosis. Hum Brain Mapp 29(5):562–573PubMedCrossRefGoogle Scholar
  39. 39.
    Rocca MA et al (2008) The “mirror-neuron system” in MS: a 3 tesla fMRI study. Neurology 70(4):255–262PubMedCrossRefGoogle Scholar
  40. 40.
    Rocca MA et al (2007) Altered functional and structural connectivities in patients with MS: a 3-T study. Neurology 69(23):2136–2145PubMedCrossRefGoogle Scholar
  41. 41.
    Filippi M et al (2004) A functional MRI study of cortical activations associated with object manipulation in patients with MS. Neuroimage 21(3):1147–1154PubMedCrossRefGoogle Scholar
  42. 42.
    Cerasa A et al (2006) Adaptive cortical changes and the functional correlates of visuo-motor integration in relapsing-remitting multiple sclerosis. Brain Res Bull 69(6):597–605PubMedCrossRefGoogle Scholar
  43. 43.
    Calautti C, Baron J-C (2003) Functional neuroimaging studies of motor recovery after stroke in adults: a review. Stroke 34(6):1553–1566PubMedCrossRefGoogle Scholar
  44. 44.
    Ciccarelli O et al (2006) Functional response to active and passive ankle movements with clinical correlations in patients with primary progressive multiple sclerosis. J Neurol 253(7):882–891PubMedCrossRefGoogle Scholar
  45. 45.
    Rocca MA et al (2010) Preserved brain adaptive properties in patients with benign multiple sclerosis. Neurology 74(2):142–149PubMedCrossRefGoogle Scholar
  46. 46.
    Petsas N et al (2013) Evidence of impaired brain activity balance after passive sensorimotor stimulation in multiple sclerosis. PLoS One 8(6):e65315PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Agosta F et al (2008) Tactile-associated recruitment of the cervical cord is altered in patients with multiple sclerosis. Neuroimage 39(4):1542–1548PubMedCrossRefGoogle Scholar
  48. 48.
    Agosta F et al (2008) Evidence for enhanced functional activity of cervical cord in relapsing multiple sclerosis. Magn Reson Med 59(5):1035–1042PubMedCrossRefGoogle Scholar
  49. 49.
    Valsasina P et al (2010) Cervical cord functional MRI changes in relapse-onset MS patients. J Neurol Neurosurg Psychiatry 81(4):405–408PubMedCrossRefGoogle Scholar
  50. 50.
    Valsasina P et al (2012) Cervical cord fMRI abnormalities differ between the progressive forms of multiple sclerosis. Hum Brain Mapp 33(9):2072–2080PubMedCrossRefGoogle Scholar
  51. 51.
    Rocca MA et al (2012) Abnormal cervical cord function contributes to fatigue in multiple sclerosis. Mult Scler 18(11):1552–1559PubMedCrossRefGoogle Scholar
  52. 52.
    Staffen W et al (2002) Cognitive function and fMRI in patients with multiple sclerosis: evidence for compensatory cortical activation during an attention task. Brain 125(Pt 6):1275–1282PubMedCrossRefGoogle Scholar
  53. 53.
    Au Duong MV et al (2005) Altered functional connectivity related to white matter changes inside the working memory network at the very early stage of MS. J Cereb Blood Flow Metab 25(10):1245–1253PubMedCrossRefGoogle Scholar
  54. 54.
    Au Duong MV et al (2005) Modulation of effective connectivity inside the working memory network in patients at the earliest stage of multiple sclerosis. Neuroimage 24(2):533–538PubMedCrossRefGoogle Scholar
  55. 55.
    Audoin B et al (2003) Compensatory cortical activation observed by fMRI during a cognitive task at the earliest stage of MS. Hum Brain Mapp 20(2):51–58PubMedCrossRefGoogle Scholar
  56. 56.
    Audoin B et al (2005) Magnetic resonance study of the influence of tissue damage and cortical reorganization on PASAT performance at the earliest stage of multiple sclerosis. Hum Brain Mapp 24(3):216–228PubMedCrossRefGoogle Scholar
  57. 57.
    Hillary FG et al (2003) An investigation of working memory rehearsal in multiple sclerosis using fMRI. J Clin Exp Neuropsychol 25(7):965–978PubMedCrossRefGoogle Scholar
  58. 58.
    Parry AM et al (2003) Potentially adaptive functional changes in cognitive processing for patients with multiple sclerosis and their acute modulation by rivastigmine. Brain 126(Pt 12):2750–2760PubMedCrossRefGoogle Scholar
  59. 59.
    Penner IK et al (2003) Analysis of impairment related functional architecture in MS patients during performance of different attention tasks. J Neurol 250(4):461–472PubMedCrossRefGoogle Scholar
  60. 60.
    Mainero C et al (2004) fMRI evidence of brain reorganization during attention and memory tasks in multiple sclerosis. Neuroimage 21(3):858–867PubMedCrossRefGoogle Scholar
  61. 61.
    Sweet LH et al (2004) Functional magnetic resonance imaging of working memory among multiple sclerosis patients. J Neuroimaging 14(2):150–157PubMedCrossRefGoogle Scholar
  62. 62.
    Sweet LH et al (2006) Functional magnetic resonance imaging response to increased verbal working memory demands among patients with multiple sclerosis. Hum Brain Mapp 27(1):28–36PubMedCrossRefGoogle Scholar
  63. 63.
    Wishart HA et al (2004) Brain activation patterns associated with working memory in relapsing-remitting MS. Neurology 62(2):234–238PubMedCrossRefGoogle Scholar
  64. 64.
    Chiaravalloti N et al (2005) Cerebral activation patterns during working memory performance in multiple sclerosis using FMRI. J Clin Exp Neuropsychol 27(1):33–54PubMedCrossRefGoogle Scholar
  65. 65.
    Cader S et al (2006) Reduced brain functional reserve and altered functional connectivity in patients with multiple sclerosis. Brain 129(Pt 2):527–537PubMedGoogle Scholar
  66. 66.
    Li Y et al (2004) Differential cerebellar activation on functional magnetic resonance imaging during working memory performance in persons with multiple sclerosis. Arch Phys Med Rehabil 85(4):635–639PubMedCrossRefGoogle Scholar
  67. 67.
    Rocca MA et al (2009) Structural and functional MRI correlates of Stroop control in benign MS. Hum Brain Mapp 30(1):276–290PubMedCrossRefGoogle Scholar
  68. 68.
    Lazeron RHC et al (2004) An fMRI study of planning-related brain activity in patients with moderately advanced multiple sclerosis. Mult Scler 10(5):549–555PubMedCrossRefGoogle Scholar
  69. 69.
    Comi G et al (2001) Clinical and MRI assessment of brain damage in MS. Neurol Sci 22(Suppl 2):123–127CrossRefGoogle Scholar
  70. 70.
    Forn C et al (2012) Functional magnetic resonance imaging correlates of cognitive performance in patients with a clinically isolated syndrome suggestive of multiple sclerosis at presentation: an activation and connectivity study. Mult Scler 18(2):153–163PubMedCrossRefGoogle Scholar
  71. 71.
    Cerasa A et al (2010) The effects of BDNF Val66Met polymorphism on brain function in controls and patients with multiple sclerosis: an imaging genetic study. Behav Brain Res 207(2):377–386PubMedCrossRefGoogle Scholar
  72. 72.
    Bobholz JA et al (2006) fMRI study of episodic memory in relapsing-remitting MS: correlation with T2 lesion volume. Neurology 67(9):1640–1645PubMedCrossRefGoogle Scholar
  73. 73.
    Jehna M et al (2011) Cognitively preserved MS patients demonstrate functional differences in processing neutral and emotional faces. Brain Imaging Behav 5(4):241–251PubMedCrossRefGoogle Scholar
  74. 74.
    Rocca MA et al (2012) Differential cerebellar functional interactions during an interference task across multiple sclerosis phenotypes. Radiology 265(3):864–873PubMedCrossRefGoogle Scholar
  75. 75.
    Lenzi D et al (2007) Effect of corpus callosum damage on ipsilateral motor activation in patients with multiple sclerosis: a functional and anatomical study. Hum Brain Mapp 28(7):636–644PubMedCrossRefGoogle Scholar
  76. 76.
    Manson SC et al (2006) Loss of interhemispheric inhibition in patients with multiple sclerosis is related to corpus callosum atrophy. Exp Brain Res 174(4):728–733PubMedCrossRefGoogle Scholar
  77. 77.
    Ceccarelli A et al (2010) Structural and functional magnetic resonance imaging correlates of motor network dysfunction in primary progressive multiple sclerosis. Eur J Neurosci 31(7):1273–1280PubMedCrossRefGoogle Scholar
  78. 78.
    Filippi M et al (2002) Functional magnetic resonance imaging correlates of fatigue in multiple sclerosis. Neuroimage 15(3):559–567PubMedCrossRefGoogle Scholar
  79. 79.
    Raichle ME, Snyder AZ (2007) A default mode of brain function: a brief history of an evolving idea. Neuroimage 37(4):1083–1090, discussion 1097–1099PubMedCrossRefGoogle Scholar
  80. 80.
    Roosendaal SD et al (2010) Resting state networks change in clinically isolated syndrome. Brain 133(Pt 6):1612–1621PubMedCrossRefGoogle Scholar
  81. 81.
    Rocca MA et al (2010) Default-mode network dysfunction and cognitive impairment in progressive MS. Neurology 74(16):1252–1259PubMedCrossRefGoogle Scholar
  82. 82.
    Bonavita S et al (2011) Distributed changes in default-mode resting-state connectivity in multiple sclerosis. Mult Scler 17(4):411–422PubMedCrossRefGoogle Scholar
  83. 83.
    Loitfelder M et al (2012) Abnormalities of resting state functional connectivity are related to sustained attention deficits in MS. PLoS One 7(8):e42862PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Hawellek DJ et al (2011) Increased functional connectivity indicates the severity of cognitive impairment in multiple sclerosis. Proc Natl Acad Sci U S A 108(47):19066–19071PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Faivre A et al (2012) Assessing brain connectivity at rest is clinically relevant in early multiple sclerosis. Mult Scler 18(9):1251–1258PubMedCrossRefGoogle Scholar
  86. 86.
    Schoonheim MM et al (2015) Thalamus structure and function determine severity of cognitive impairment in multiple sclerosis. Neurology 84(8):776–783PubMedCrossRefGoogle Scholar
  87. 87.
    Rocca M et al (2012) Large-scale neuronal network dysfunction in relapsing-remitting multiple sclerosis. Neurology 79(14):1449–1457PubMedCrossRefGoogle Scholar
  88. 88.
    Sumowski JF et al (2010) Intellectual enrichment is linked to cerebral efficiency in multiple sclerosis: functional magnetic resonance imaging evidence for cognitive reserve. Brain 133(Pt 2):362–374PubMedCrossRefGoogle Scholar
  89. 89.
    Loitfelder M et al (2011) Reorganization in cognitive networks with progression of multiple sclerosis: insights from fMRI. Neurology 76(6):526–533PubMedCrossRefGoogle Scholar
  90. 90.
    Tortorella C et al (2013) Load-dependent dysfunction of the putamen during attentional processing in patients with clinically isolated syndrome suggestive of multiple sclerosis. Mult Scler 19(9):1153–1160PubMedCrossRefGoogle Scholar
  91. 91.
    Amann M et al (2011) Altered functional adaptation to attention and working memory tasks with increasing complexity in relapsing-remitting multiple sclerosis patients. Hum Brain Mapp 32(10):1704–1719PubMedCrossRefGoogle Scholar
  92. 92.
    Rocca MA et al (2014) Functional correlates of cognitive dysfunction in multiple sclerosis: a multicenter fMRI Study. Hum Brain Mapp 35(12):5799–5814PubMedCrossRefGoogle Scholar
  93. 93.
    Pantano P et al (2005) A longitudinal fMRI study on motor activity in patients with multiple sclerosis. Brain 128(Pt 9):2146–2153PubMedCrossRefGoogle Scholar
  94. 94.
    Audoin B et al (2008) Efficiency of cognitive control recruitment in the very early stage of multiple sclerosis: a one-year fMRI follow-up study. Mult Scler 14(6):786–792PubMedCrossRefGoogle Scholar
  95. 95.
    Loitfelder M et al (2014) Brain activity changes in cognitive networks in relapsing-remitting multiple sclerosis—insights from a longitudinal FMRI study. PLoS One 9(4):e93715PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Wegner C et al (2008) Relating functional changes during hand movement to clinical parameters in patients with multiple sclerosis in a multi-centre fMRI study. Eur J Neurol 15(2):113–122PubMedCrossRefGoogle Scholar
  97. 97.
    Rocca MA et al (2009) Abnormal connectivity of the sensorimotor network in patients with MS: a multicenter fMRI study. Hum Brain Mapp 30(8):2412–2425PubMedCrossRefGoogle Scholar
  98. 98.
    Mainero C et al (2004) Enhanced brain motor activity in patients with MS after a single dose of 3,4-diaminopyridine. Neurology 62(11):2044–2050PubMedCrossRefGoogle Scholar
  99. 99.
    Cader S, Palace J, Matthews PM (2009) Cholinergic agonism alters cognitive processing and enhances brain functional connectivity in patients with multiple sclerosis. J Psychopharmacol 23(6):686–696PubMedCrossRefGoogle Scholar
  100. 100.
    Tomassini V et al (2012) Relating brain damage to brain plasticity in patients with multiple sclerosis. Neurorehabil Neural Repair 26(6):581–593PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Filippi M et al (2012) Effects of cognitive rehabilitation on structural and functional MRI measures in multiple sclerosis: an explorative study. Radiology 262(3):932–940PubMedCrossRefGoogle Scholar
  102. 102.
    Sastre-Garriga J et al (2011) A functional magnetic resonance proof of concept pilot trial of cognitive rehabilitation in multiple sclerosis. Mult Scler 17(4):457–467PubMedCrossRefGoogle Scholar
  103. 103.
    Cerasa A et al (2013) Computer-assisted cognitive rehabilitation of attention deficits for multiple sclerosis: a randomized trial with fMRI correlates. Neurorehabil Neural Repair 27(4):284–295PubMedCrossRefGoogle Scholar
  104. 104.
    Parisi L et al (2014) Changes of brain resting state functional connectivity predict the persistence of cognitive rehabilitation effects in patients with multiple sclerosis. Mult Scler 20(6):686–694PubMedCrossRefGoogle Scholar
  105. 105.
    Liu Y et al (2011) Abnormal baseline brain activity in patients with neuromyelitis optica: a resting-state fMRI study. Eur J Radiol 80(2):407–411PubMedCrossRefGoogle Scholar
  106. 106.
    Mikulis DJ et al (2002) Adaptation in the motor cortex following cervical spinal cord injury. Neurology 58(5):794–801PubMedCrossRefGoogle Scholar
  107. 107.
    Curt A et al (2002) Changes of non-affected upper limb cortical representation in paraplegic patients as assessed by fMRI. Brain 125(Pt 11):2567–2578PubMedCrossRefGoogle Scholar
  108. 108.
    Sabbah P et al (2002) Sensorimotor cortical activity in patients with complete spinal cord injury: a functional magnetic resonance imaging study. J Neurotrauma 19(1):53–60PubMedCrossRefGoogle Scholar
  109. 109.
    Cramer SC et al (2001) Changes in motor cortex activation after recovery from spinal cord inflammation. Mult Scler 7(6):364–370PubMedCrossRefGoogle Scholar
  110. 110.
    Rocca MA et al (2006) The level of spinal cord involvement influences the pattern of movement-associated cortical recruitment in patients with isolated myelitis. Neuroimage 30(3):879–884PubMedCrossRefGoogle Scholar
  111. 111.
    Rocca MA et al (2006) An fMRI study of the motor system in patients with neuropsychiatric systemic lupus erythematosus. Neuroimage 30(2):478–484PubMedCrossRefGoogle Scholar
  112. 112.
    Hadjikhani N et al (2001) Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc Natl Acad Sci U S A 98(8):4687–4692PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Cao Y et al (1999) Functional MRI-BOLD of visually triggered headache in patients with migraine. Arch Neurol 56(5):548–554PubMedCrossRefGoogle Scholar
  114. 114.
    Lakhan SE, Avramut M, Tepper SJ (2013) Structural and functional neuroimaging in migraine: insights from 3 decades of research. Headache 53(1):46–66PubMedCrossRefGoogle Scholar
  115. 115.
    Stankewitz A et al (2011) Trigeminal nociceptive transmission in migraineurs predicts migraine attacks. J Neurosci 31(6):1937–1943PubMedCrossRefGoogle Scholar
  116. 116.
    Tedeschi G et al (2013) The role of BOLD-fMRI in elucidating migraine pathophysiology. Neurol Sci 34(Suppl 1):S47–S50PubMedCrossRefGoogle Scholar
  117. 117.
    Russo A et al (2012) Pain processing in patients with migraine: an event-related fMRI study during trigeminal nociceptive stimulation. J Neurol 259(9):1903–1912PubMedCrossRefGoogle Scholar
  118. 118.
    Sprenger T, Borsook D (2012) Migraine changes the brain: neuroimaging makes its mark. Curr Opin Neurol 25(3):252–262PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Burstein R et al (2010) Thalamic sensitization transforms localized pain into widespread allodynia. Ann Neurol 68(1):81–91PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Maizels M, Aurora S, Heinricher M (2012) Beyond neurovascular: migraine as a dysfunctional neurolimbic pain network. Headache 52(10):1553–1565PubMedCrossRefGoogle Scholar
  121. 121.
    Chiapparini L et al (2010) Neuroimaging in chronic migraine. Neurol Sci 31(Suppl 1):S19–S22PubMedCrossRefGoogle Scholar
  122. 122.
    Bhaskar S et al (2013) Recent progress in migraine pathophysiology: role of cortical spreading depression and magnetic resonance imaging. Eur J Neurosci 38(11):3540–3551PubMedCrossRefGoogle Scholar
  123. 123.
    Antal A et al (2011) Differential activation of the middle-temporal complex to visual stimulation in migraineurs. Cephalalgia 31(3):338–345PubMedCrossRefGoogle Scholar
  124. 124.
    Furman JM, Marcus DA, Balaban CD (2013) Vestibular migraine: clinical aspects and pathophysiology. Lancet Neurol 12(7):706–715PubMedCrossRefGoogle Scholar
  125. 125.
    Sprenger T, Magon S (2013) Can functional magnetic resonance imaging at rest shed light on the pathophysiology of migraine? Headache 53(5):723–725PubMedCrossRefGoogle Scholar
  126. 126.
    Mainero C, Boshyan J, Hadjikhani N (2011) Altered functional magnetic resonance imaging resting-state connectivity in periaqueductal gray networks in migraine. Ann Neurol 70(5):838–845PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Tessitore A et al (2013) Disrupted default mode network connectivity in migraine without aura. J Headache Pain 14(1):89PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Neuroimaging Research Unit, Institute of Experimental Neurology, Division of NeuroscienceSan Raffaele Scientific Institute and Vita-Salute San Raffaele UniversityMilanItaly
  2. 2.Department of Neurology, Division of NeuroscienceSan Raffaele Scientific Institute and Vita-Salute San Raffaele UniversityMilanItaly

Personalised recommendations