Introduction to Functional MRI Hardware

  • Luis Hernandez-GarciaEmail author
  • Scott Peltier
  • William Grissom
Part of the Neuromethods book series (NM, volume 119)


The chapter gives an overview of peripheral devices commonly used in fMRI experiments, and it addresses the principles, performance aspects, and specifications of fMRI hardware. The general guidelines for MR-compatible hardware are also discussed. The target audience is quite broad and mathematical descriptions are kept to a minimum and qualitative descriptions are favored whenever possible.

Key words

Functional MRI Hardware Peripheral devices MRI Multimodal acquisition Neuroimaging 


  1. 1.
    Shellock FG (2002) Reference manual for magnetic resonance safety, implants, and devices. Saunders, Oxford, UKGoogle Scholar
  2. 2.
    Shellock FG, Crues JV 3rd (2002) MR safety and the American College of Radiology white paper. AJR Am J Roentgenol 178:1349–1352CrossRefPubMedGoogle Scholar
  3. 3.
    Train JJ (2003) Magnetic resonance compatible equipment. Anaesthesia 58:387, Author reply 387CrossRefPubMedGoogle Scholar
  4. 4.
    Durand E, van de Moortele PF, Pachot-Clouard M, Le Bihan D (2001) Artifact due to B0 fluctuations in fMRI: correction using the k-space central line. Magn Reson Med 46:198–201CrossRefPubMedGoogle Scholar
  5. 5.
    Tinkham M (2004) Introduction to superconductivity, 2nd edn, Dover Books on Physics. Dover Publications, Mineola, NYGoogle Scholar
  6. 6.
    Radebaugh R (2009) Cryocoolers: the state of the art and recent developments. J Phys Condens Matter 21:164219CrossRefPubMedGoogle Scholar
  7. 7.
    Williams DS, Detre JA, Leigh JS, Koretsky AP (1992) Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci U S A 89:212–216CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Yang QX, Wang J, Zhang X et al (2002) Analysis of wave behavior in lossy dielectric samples at high field. Magn Reson Med 47:982–989CrossRefPubMedGoogle Scholar
  9. 9.
    Collins CM, Liu W, Schreiber W, Yang QX, Smith MB (2005) Central brightening due to constructive interference with, without, and despite dielectric resonance. J Magn Reson Imaging 21:192–196CrossRefPubMedGoogle Scholar
  10. 10.
    Tropp J (2004) Image brightening in samples of high dielectric constant. J Magn Reson 167:12–24CrossRefPubMedGoogle Scholar
  11. 11.
    Schneider E, Glover G (1991) Rapid in vivo proton shimming. Magn Reson Med 18:335–347CrossRefPubMedGoogle Scholar
  12. 12.
    Dylan Tisdall M, Witzel T, Tountcheva V, McNab JA, Adad JC, Kimmlingen R, Hoecht P, Eberlein E, Heberlein K, Schmitt F, Thein H, Wedeen Van J, Rosen BR, Wald LL (2012) Improving SNR in high b-value diffusion imaging using Gmax = 300 mT/m human gradients, Proc ISMRM 2012Google Scholar
  13. 13.
    Gach HM, Lowe IJ, Madio DP et al (1998) A programmable pre-emphasis system. Magn Reson Med 40:427–431CrossRefPubMedGoogle Scholar
  14. 14.
    Wysong RE, Madio DP, Lowe IJ (1994) A novel eddy current compensation scheme for pulsed gradient systems. Magn Reson Med 31:572–575CrossRefPubMedGoogle Scholar
  15. 15.
    Mansfield P, Chapman B (1986) Active magnetic screening of coils for static and time-dependent magnetic field generation in NMR imaging. J Phys E Sci Instrum 19:540–545CrossRefGoogle Scholar
  16. 16.
    Edelstein WA, Kidane TK, Taracila V et al (2005) Active-passive gradient shielding for MRI acoustic noise reduction. Magn Reson Med 53:1013–1017CrossRefPubMedGoogle Scholar
  17. 17.
    Pruessmann KP et al (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42(5):952–962CrossRefPubMedGoogle Scholar
  18. 18.
    Blaimer M, Breuer F, Mueller M et al (2004) SMASH, SENSE, PILS, GRAPPA: how to choose the optimal method. Top Magn Reson Imaging 15:223–236CrossRefPubMedGoogle Scholar
  19. 19.
    Hoult DI, Chen CN, Sank VJ (1984) Quadrature detection in the laboratory frame. Magn Reson Med 1:339–353CrossRefPubMedGoogle Scholar
  20. 20.
    Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM (1990) The NMR phased array. Magn Reson Med 16:192–225CrossRefPubMedGoogle Scholar
  21. 21.
    Griswold MA et al (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210CrossRefPubMedGoogle Scholar
  22. 22.
    Larkman D, Hajnal J, Herlihy A, Coutts G, Young I, Ehnholm G (2001) Use of multicoil arrays for separation of signal from multiple slices simultaneously excited. J Magn Reson Imaging 13(2):313–317CrossRefPubMedGoogle Scholar
  23. 23.
    Setsompop K, Gagoski BA, Polimeni JR, Witzel T, Wedeen VJ, Wald LL (2012) Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn Reson Med 67:1210–1224CrossRefPubMedGoogle Scholar
  24. 24.
    Feinberg D, Moeller S, Smith S, Auerbach E, Ramanna S, Glasser M, Miller K, Ugurbil K, Yacoub E (2010) Multiplexed echo planar imaging for sub-second whole brain fmri and fast diffusion imaging. PLoS One 5(12), e15710CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Zhang Z, Yip CY, Grissom W, Noll DC, Boada FE, Stenger VA (2007) Reduction of transmitter B1 inhomogeneity with transmit SENSE slice-select pulses. Magn Reson Med 57(5):842–847CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Stenger VA, Boada FE, Noll DC (2000) Three-dimensional tailored RF pulses for the reduction of susceptibility artifacts in T2*-weighted functional MRI. Magn Reson Med 44(4):525–531CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Yip CY, Fessler JA, Noll DC (2006) Advanced three-dimensional tailored RF pulse for signal recovery in T2*-weighted functional magnetic resonance imaging. Magn Reson Med 56(5):1050–1059CrossRefPubMedGoogle Scholar
  28. 28.
    Jakob PM et al (1998) Functional burst imaging. Magn Reson Med 40:614–621CrossRefPubMedGoogle Scholar
  29. 29.
    Edmister WB, Talavage TM, Ledden PJ, Weisskoff RM (1999) Improved auditory cortex imaging using clustered volume acquisitions. Hum Brain Mapp 7:89–97CrossRefPubMedGoogle Scholar
  30. 30.
    Noll DC, Schneider W (1994) Theory, simulation, and compensation of physiological motion artifacts in functional MRI. Image processing, 1994. Proceedings ICIP-94. IEEE Int Conf 3:40–44Google Scholar
  31. 31.
    Hu X, Le TH, Parrish T, Erhard P (1995) Retrospective estimation and correction of physiological fluctuation in functional MRI. Magn Reson Med 34:201–212CrossRefPubMedGoogle Scholar
  32. 32.
    Pfeuffer J, Van de Moortele PF, Ugurbil K, Hu X, Glover GH (2002) Correction of physiologically induced global off-resonance effects in dynamic echo-planar and spiral functional imaging. Magn Reson Med 47:344–353CrossRefPubMedGoogle Scholar
  33. 33.
    Tremblay M, Tam F, Graham SJ (2005) Retrospective coregistration of functional magnetic resonance imaging data using external monitoring. Magn Reson Med 53:141–149CrossRefPubMedGoogle Scholar
  34. 34.
    Zaitsev M, Dold C, Sakas G, Hennig J, Speck O (2006) Magnetic resonance imaging of freely moving objects: prospective real-time motion correction using an external optical motion tracking system. Neuroimage 31:1038–1050CrossRefPubMedGoogle Scholar
  35. 35.
    Thesen S, Heid O, Mueller E, Schad LR (2000) Prospective acquisition correction for head motion with image-based tracking for real-time fMRI. Magn Reson Med 44:457–465CrossRefPubMedGoogle Scholar
  36. 36.
    Chen W, Zhu XH (1997) Suppression of physiological eye movement artifacts in functional MRI using slab presaturation. Magn Reson Med 38:546–550CrossRefPubMedGoogle Scholar
  37. 37.
    Harrivel AR et al (2009) Toward improved headgear for monitoring with functional near infrared spectroscopy. NeuroImage 47:S141CrossRefGoogle Scholar
  38. 38.
    Barker AT (1991) An introduction to the basic principles of magnetic nerve stimulation. J Clin Neurophysiol 8:26–37CrossRefPubMedGoogle Scholar
  39. 39.
    Barker AT (1999) The history and basic principles of magnetic nerve stimulation. Electroencephalogr Clin Neurophysiol Suppl 51:3–21PubMedGoogle Scholar
  40. 40.
    Jalinous R (1991) Technical and practical aspects of magnetic nerve stimulation. J Clin Neurophysiol 8:10–25CrossRefPubMedGoogle Scholar
  41. 41.
    Ruohonen J, Ravazzani P, Tognola G, Grandori F (1997) Modeling peripheral nerve stimulation using magnetic fields. J Peripher Nerv Syst 2:17–29PubMedGoogle Scholar
  42. 42.
    Ilmoniemi RJ et al (1997) Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity. Neuroreport 8:3537–3540CrossRefPubMedGoogle Scholar
  43. 43.
    Berne RM, Levy MN (1993) Physiology, Mosby year book. Mosby, St. LouisGoogle Scholar
  44. 44.
    George MS et al (2003) Transcranial magnetic stimulation. Neurosurg Clin N Am 14:283–301CrossRefPubMedGoogle Scholar
  45. 45.
    Paus T (2005) Inferring causality in brain images: a perturbation approach. Philos Trans R Soc Lond B Biol Sci 360:1109–1114CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Pascual-Leone A, Walsh V, Rothwell J (2000) Transcranial magnetic stimulation in cognitive neuroscience–virtual lesion, chronometry, and functional connectivity. Curr Opin Neurobiol 10:232–237CrossRefPubMedGoogle Scholar
  47. 47.
    Rothwell JC (1999) Paired-pulse investigations of short-latency intracortical facilitation using TMS in humans. Electroencephalogr Clin Neurophysiol Suppl 51:113–119PubMedGoogle Scholar
  48. 48.
    Ilmoniemi RJ, Ruohonen J, Karhu J (1999) Transcranial magnetic stimulation–a new tool for functional imaging of the brain. Crit Rev Biomed Eng 27:241–284PubMedGoogle Scholar
  49. 49.
    Bastings EP et al (1998) Co-registration of cortical magnetic stimulation and functional magnetic resonance imaging. Neuroreport 9:1941–1946CrossRefPubMedGoogle Scholar
  50. 50.
    Bohning DE et al (1998) Echoplanar BOLD fMRI of brain activation induced by concurrent transcranial magnetic stimulation. Invest Radiol 33:336–340CrossRefPubMedGoogle Scholar
  51. 51.
    Bohning DE et al (1999) A combined TMS/fMRI study of intensity-dependent TMS over motor cortex. Biol Psychiatry 45:385–394CrossRefPubMedGoogle Scholar
  52. 52.
    Bohning DE et al (2000) BOLD-f MRI response to single-pulse transcranial magnetic stimulation (TMS). J Magn Reson Imaging 11:569–574CrossRefPubMedGoogle Scholar
  53. 53.
    Nitsche MA, Paulus W (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527(Pt 3):633–639CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Fregni F, Boggio PS, Nitsche M, Bermpohl F, Antal A, Feredoes E, Marcolin MA, Rigonatti SP, Silva MT, Paulus W, Pascual-Leone A (2005) Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp Brain Res 166(1):23–30CrossRefPubMedGoogle Scholar
  55. 55.
    Dieckhöfer A, Waberski TD, Nitsche M, Paulus W, Buchner H, Gobbelé R (2006) Transcranial direct current stimulation applied over the somatosensory cortex – differential effect on low and high frequency SEPs. Clin Neurophysiol 117(10):2221–2227CrossRefPubMedGoogle Scholar
  56. 56.
    Wagner T, Valero-Cabre A, Pascual-Leone A (2007) Noninvasive human brain stimulation. Annu Rev Biomed Eng 9:527–565CrossRefPubMedGoogle Scholar
  57. 57.
    Radman T, Ramos RL, Brumberg JC, Bikson M (2009) Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimul 2:215–228CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Antal A et al (2011) Transcranial direct current stimulation over the primary motor cortex during fMRI. Neuroimage 55(2):590–596CrossRefPubMedGoogle Scholar
  59. 59.
    Weber MJ et al (2014) Prefrontal transcranial direct current stimulation alters activation and connectivity in cortical and subcortical reward systems: A tDCS‐fMRI study. Hum Brain Mapp 35(8):3673–3686CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Luis Hernandez-Garcia
    • 1
    Email author
  • Scott Peltier
    • 1
  • William Grissom
    • 2
  1. 1.University of Michigan Functional MRI Laboratory and Biomedical Engineering DepartmentUniversity of MichiganAnn ArborUSA
  2. 2.Biomedical Engineering DepartmentVanderbilt UniversityNashvilleUSA

Personalised recommendations