Skip to main content

Functional Imaging of the Human Visual System

  • Protocol
  • First Online:
fMRI Techniques and Protocols

Part of the book series: Neuromethods ((NM,volume 119))

  • 2544 Accesses

Abstract

The human visual system consists of a large, yet unknown number of cortical areas. We summarize the efforts which have led to the identification of 19 retinotopic areas in human occipital cortex, using the macaque visual cortex as a guide. In this process retinotopic mapping has proven far superior to the study of functional properties. Macaques and humans share early areas (V1, V2, and V3), a motion-sensitive middle temporal (MT/V5) cluster as well as six other areas. The remaining human occipital areas either result from reorganization of a group of monkey areas or seem to be specifically human. Several regions sensitive to motion and even higher-order motion have been described in parietal cortex, the retinotopic organization of which is still under debate. On the other hand, both dorsal and ventral regions are sensitive to shape, which is most pronounced in the lateral occipital complex (LOC) extending into the fusiform gyrus. The anterior part of this complex is flanked by specialized regions devoted to processing faces and bodies and represents “visual objects” rather than image properties. Its exact organization requires further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Van Essen DC (2004) Organization of visual areas in macaque and human cerebral cortex. In: Chalupa LM, Werner JS (eds) The visual neurosciences, vol 1. MIT Press, Cambridge, MA, pp 507–521

    Google Scholar 

  2. Nelissen K, Vanduffel W, Orban GA (2006) Charting the lower superior temporal region, a new motion-sensitive region in monkey superior temporal sulcus. J Neurosci 26:5929–5947

    Article  CAS  PubMed  Google Scholar 

  3. Orban GA, Van Essen D, Vanduffel W (2004) Comparative mapping of higher visual areas in monkeys and humans. Trends Cogn Sci 8:315–324

    Article  PubMed  Google Scholar 

  4. Glasser MF, Van Essen DC (2011) Mapping human cortical areas in vivo based on myelin content as revealed by t1- and t2-weighted MRI. J Neurosci 31:11597–11616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dougherty RF et al (2005) Occipital-callosal pathways in children validation and atlas development. Ann N Y Acad Sci 1064:98–112

    Article  PubMed  Google Scholar 

  6. Schmahmann JD et al (2007) Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain 130:630–653

    Article  PubMed  Google Scholar 

  7. Van Essen DC, Jbabdi S, Sotiropoulos SN, Chen C, Dikranian K, Coalson T, Harwell J, Behrens TE, Glasser MT (2013) Mapping connections in humans and non-human primates: aspirations and challenges for diffusion imaging. In: Johansen-Berg H, Behrens TE (eds) Diffusion MRI from quantitative measurement to in vivo neuroanatomy. Academic, Amsterdam

    Google Scholar 

  8. Krekelberg B, Boynton GM, van Wezel RJA (2006) Adaptation: from single cells to BOLD signals. Trends Neurosci 29:250–256

    Article  CAS  PubMed  Google Scholar 

  9. Kovács G, Kaiser D, Kaliukhovich DA, Vidnyánszky Z, Vogels R (2013) Repetition probability does not affect fMRI repetition suppression for objects. J Neurosci 33:9805–9812

    Article  PubMed  CAS  Google Scholar 

  10. Sawamura H, Orban GA, Vogels R (2006) Selectivity of neuronal adaptation does not match response selectivity: a single-cell study of the fMRI adaptation paradigm. Neuron 49:307–318

    Article  CAS  PubMed  Google Scholar 

  11. Haynes J-D, Rees G (2006) Decoding mental states from brain activity in humans. Nat Rev Neurosci 7:523–534

    Article  CAS  PubMed  Google Scholar 

  12. Vogels R, Orban GA (1990) How well do response changes of striate neurons signal differences in orientation: a study in the discriminating monkey. J Neurosci 10:3543–3558

    CAS  PubMed  Google Scholar 

  13. Haynes J-D, Rees G (2005) Predicting the orientation of invisible stimuli from activity in human primary visual cortex. Nat Neurosci 8:686–691

    Article  CAS  PubMed  Google Scholar 

  14. Vanduffel W et al (2001) Visual motion processing investigated using contrast agent-enhanced fMRI in awake behaving monkeys. Neuron 32:565–577

    Article  CAS  PubMed  Google Scholar 

  15. Orban GA (2011) The extraction of 3D shape in the visual system of human and nonhuman primates. Annu Rev Neurosci 34:361–388

    Article  CAS  PubMed  Google Scholar 

  16. Orban GA (2002) Functional MRI in the awake monkey: the missing link. J Cogn Neurosci 14:965–969

    Article  PubMed  Google Scholar 

  17. Boynton GM, Demb JB, Glover GH, Heeger DJ (1999) Neuronal basis of contrast discrimination. Vision Res 39:257–269

    Article  CAS  PubMed  Google Scholar 

  18. Zenger-Landolt B, Heeger DJ (2003) Response suppression in v1 agrees with psychophysics of surround masking. J Neurosci 23:6884–6893

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Chandrasekaran C, Canon V, Dahmen JC, Kourtzi Z, Welchman AE (2007) Neural correlates of disparity-defined shape discrimination in the human brain. J Neurophysiol 97:1553–1565

    Article  PubMed  Google Scholar 

  20. Denys K et al (2004) The processing of visual shape in the cerebral cortex of human and nonhuman primates: a functional magnetic resonance imaging study. J Neurosci 24:2551–2565

    Article  PubMed  Google Scholar 

  21. Kourtzi Z, Kanwisher N (2000) Cortical regions involved in perceiving object shape. J Neurosci 20:3310–3318

    CAS  PubMed  Google Scholar 

  22. Buckner RL et al (1998) Functional-anatomic correlates of object priming in humans revealed by rapid presentation event-related fMRI. Neuron 20:285–295

    Article  CAS  PubMed  Google Scholar 

  23. Grill-Spector K et al (1999) Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron 24:187–203

    Article  CAS  PubMed  Google Scholar 

  24. Grill-Spector K, Malach R (2001) fMR-adaptation: a tool for studying the functional properties of human cortical neurons. Acta Psychol (Amst) 107:293–321

    Article  CAS  Google Scholar 

  25. Grill-Spector K, Henson R, Martin A (2006) Repetition and the brain: neural models of stimulus-specific effects. Trends Cogn Sci 10:14–23

    Article  PubMed  Google Scholar 

  26. Koutstaal W et al (2001) Perceptual specificity in visual object priming: functional magnetic resonance imaging evidence for a laterality difference in fusiform cortex. Neuropsychologia 39:184–199

    Article  CAS  PubMed  Google Scholar 

  27. Vuilleumier P, Henson RN, Driver J, Dolan RJ (2002) Multiple levels of visual object constancy revealed by event-related fMRI of repetition priming. Nat Neurosci 5:491–499

    Article  CAS  PubMed  Google Scholar 

  28. Lisberger SG, Movshon JA (1999) Visual motion analysis for pursuit eye movements in area MT of macaque monkeys. J Neurosci 19:2224–2246

    CAS  PubMed  Google Scholar 

  29. Müller JR, Metha AB, Krauskopf J, Lennie P (1999) Rapid adaptation in visual cortex to the structure of images. Science 285:1405–1408

    Article  PubMed  Google Scholar 

  30. Tootell RB et al (1995) Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging. Nature 375:139–141

    Article  CAS  PubMed  Google Scholar 

  31. Huk AC, Ress D, Heeger DJ (2001) Neuronal basis of the motion aftereffect reconsidered. Neuron 32:161–172

    Article  CAS  PubMed  Google Scholar 

  32. Huk AC, Heeger DJ (2002) Pattern-motion responses in human visual cortex. Nat Neurosci 5:72–75

    Article  CAS  PubMed  Google Scholar 

  33. Engel SA, Furmanski CS (2001) Selective adaptation to color contrast in human primary visual cortex. J Neurosci 21:3949–3954

    CAS  PubMed  Google Scholar 

  34. Tolias AS, Smirnakis SM, Augath MA, Trinath T, Logothetis NK (2001) Motion processing in the macaque: revisited with functional magnetic resonance imaging. J Neurosci 21:8594–8601

    CAS  PubMed  Google Scholar 

  35. Norman KA, Polyn SM, Detre GJ, Haxby JV (2006) Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn Sci 10:424–430

    Article  PubMed  Google Scholar 

  36. Cox DD, Savoy RL (2003) Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex. Neuroimage 19:261–270

    Article  PubMed  Google Scholar 

  37. Kamitani Y, Tong F (2005) Decoding the visual and subjective contents of the human brain. Nat Neurosci 8:679–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kamitani Y, Tong F (2006) Decoding seen and attended motion directions from activity in the human visual cortex. Curr Biol 16:1096–1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Williams MA, Dang S, Kanwisher NG (2007) Only some spatial patterns of fMRI response are read out in task performance. Nat Neurosci 10:685–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. O’Toole AJ, Jiang F, Abdi H, Haxby JV (2005) Partially distributed representations of objects and faces in ventral temporal cortex. J Cogn Neurosci 17:580–590

    Article  PubMed  Google Scholar 

  41. Hanson SJ, Matsuka T, Haxby JV (2004) Combinatorial codes in ventral temporal lobe for object recognition: Haxby (2001) revisited: is there a “face” area? Neuroimage 23:156–166

    Article  PubMed  Google Scholar 

  42. Haxby JV et al (2001) Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293:2425–2430

    Article  CAS  PubMed  Google Scholar 

  43. Serences JT, Saproo S, Scolari M, Ho T, Muftuler LT (2009) Estimating the influence of attention on population codes in human visual cortex using voxel-based tuning functions. Neuroimage 44:223–231

    Article  PubMed  Google Scholar 

  44. Friston KJ, Rotshtein P, Geng JJ, Sterzer P, Henson RN (2006) A critique of functional localisers. Neuroimage 30:1077–1087

    Article  CAS  PubMed  Google Scholar 

  45. Saxe R, Brett M, Kanwisher N (2006) Divide and conquer: a defense of functional localizers. Neuroimage 30:1088–1096

    Article  PubMed  Google Scholar 

  46. Fox PT et al (1986) Mapping human visual cortex with positron emission tomography. Nature 323:806–809

    Article  CAS  PubMed  Google Scholar 

  47. Schneider W, Noll DC, Cohen JD (1993) Functional topographic mapping of the cortical ribbon in human vision with conventional MRI scanners. Nature 365:150–153

    Article  CAS  PubMed  Google Scholar 

  48. Shipp S, Watson JD, Frackowiak RS, Zeki S (1995) Retinotopic maps in human prestriate visual cortex: the demarcation of areas V2 and V3. Neuroimage 2:125–132

    Article  CAS  PubMed  Google Scholar 

  49. Engel SA et al (1994) fMRI of human visual cortex. Nature 369:525

    Article  CAS  PubMed  Google Scholar 

  50. Dougherty RF et al (2003) Visual field representations and locations of visual areas V1/2/3 in human visual cortex. J Vis 3:586–598

    Article  PubMed  Google Scholar 

  51. Sereno MI et al (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268:889–893

    Article  CAS  PubMed  Google Scholar 

  52. DeYoe EA et al (1996) Mapping striate and extrastriate visual areas in human cerebral cortex. Proc Natl Acad Sci U S A 93:2382–2386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Engel SA, Glover GH, Wandell BA (1997) Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb Cortex 7:181–192

    Article  CAS  PubMed  Google Scholar 

  54. Georgieva S, Peeters R, Kolster H, Todd JT, Orban GA (2009) The processing of three-dimensional shape from disparity in the human brain. J Neurosci 29:727–742

    Article  CAS  PubMed  Google Scholar 

  55. Kolster H, Peeters R, Orban GA (2010) The retinotopic organization of the human middle temporal area MT/V5 and its cortical neighbors. J Neurosci 30:9801–9820

    Article  CAS  PubMed  Google Scholar 

  56. Abdollahi RO et al (2014) Correspondences between retinotopic areas and myelin maps in human visual cortex. Neuroimage 99:509–524

    Article  PubMed  PubMed Central  Google Scholar 

  57. Robinson EC et al (2013) Multimodal surface matching: fast and generalisable cortical registration using discrete optimisation. In: Lect Notes Comput Sci (including Subser. Lect Notes Artif Intell Lect Notes Bioinformatics) 7917 LNCS. pp 475–486

    Google Scholar 

  58. Vanduffel W, Zhu Q, Orban GA (2014) Monkey cortex through fMRI glasses. Neuron 83:533–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lyon DC, Kaas JH (2002) Evidence for a modified V3 with dorsal and ventral halves in macaque monkeys. Neuron 33:453–461

    Article  CAS  PubMed  Google Scholar 

  60. Rosa MGP, Tweedale R (2005) Brain maps, great and small: lessons from comparative studies of primate visual cortical organization. Philos Trans R Soc Lond B Biol Sci 360:665–691

    Article  PubMed  PubMed Central  Google Scholar 

  61. Duncan RO, Boynton GM (2003) Cortical magnification within human primary visual cortex correlates with acuity thresholds. Neuron 38:659–671

    Article  CAS  PubMed  Google Scholar 

  62. Adams DL, Sincich LC, Horton JC (2007) Complete pattern of ocular dominance columns in human primary visual cortex. J Neurosci 27:10391–10403

    Article  CAS  PubMed  Google Scholar 

  63. Van Essen DC, Newsome WT, Maunsell JHR (1984) The visual field representation in striate cortex of the macaque monkey: asymmetries, anisotropies, and individual variability. Vision Res 24:429–448

    Article  PubMed  Google Scholar 

  64. Fischl B et al (2008) Cortical folding patterns and predicting cytoarchitecture. Cereb Cortex 18:1973–1980

    Article  PubMed  Google Scholar 

  65. Hagmann P et al (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6:1479–1493

    Article  CAS  Google Scholar 

  66. Zeki S et al (1991) A direct demonstration of functional specialization in human visual cortex. J Neurosci 11:641–649

    CAS  PubMed  Google Scholar 

  67. Watson JD et al (1993) Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. Cereb Cortex 3:79–94

    Article  CAS  PubMed  Google Scholar 

  68. Tootell RB et al (1995) Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J Neurosci 15:3215–3230

    CAS  PubMed  Google Scholar 

  69. Huk AC, Dougherty RF, Heeger DJ (2002) Retinotopy and functional subdivision of human areas MT and MST. J Neurosci 22:7195–7205

    CAS  PubMed  Google Scholar 

  70. Dukelow SP et al (2001) Distinguishing subregions of the human MT+ complex using visual fields and pursuit eye movements. J Neurophysiol 86:1991–2000

    CAS  PubMed  Google Scholar 

  71. Smith AT, Wall MB, Williams AL, Singh KD (2006) Sensitivity to optic flow in human cortical areas MT and MST. Eur J Neurosci 23:561–569

    Article  CAS  PubMed  Google Scholar 

  72. Van Essen DC, Maunsell JH, Bixby JL (1981) The middle temporal visual area in the macaque: myeloarchitecture, connections, functional properties and topographic organization. J Comp Neurol 199:293–326

    Article  PubMed  Google Scholar 

  73. Fize D et al (2003) The retinotopic organization of primate dorsal V4 and surrounding areas: a functional magnetic resonance imaging study in awake monkeys. J Neurosci 23:7395–7406

    CAS  PubMed  Google Scholar 

  74. Kolster H et al (2009) Visual field map clusters in macaque extrastriate visual cortex. J Neurosci 29:7031–7039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tootell RB, Hadjikhani N (2001) Where is “dorsal V4” in human visual cortex? Retinotopic, topographic and functional evidence. Cereb Cortex 11:298–311

    Article  CAS  PubMed  Google Scholar 

  76. Tanaka K et al (1986) Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey. J Neurosci 6:134–144

    CAS  PubMed  Google Scholar 

  77. Morrone MC et al (2000) A cortical area that responds specifically to optic flow, revealed by fMRI. Nat Neurosci 3:1322–1328

    Article  CAS  PubMed  Google Scholar 

  78. Tootell R et al (1997) Functional analysis of V3A and related areas in human visual cortex. J Neurosci 17:7060–7078

    CAS  PubMed  Google Scholar 

  79. Sunaert S, Van Hecke P, Marchal G, Orban GA (1999) Motion-responsive regions of the human brain. Exp Brain Res 127:355–370

    Article  CAS  PubMed  Google Scholar 

  80. Press WA, Brewer AA, Dougherty RF, Wade AR, Wandell BA (2001) Visual areas and spatial summation in human visual cortex. Vision Res 41:1321–1332

    Article  CAS  PubMed  Google Scholar 

  81. Wandell BA, Dumoulin SO, Brewer AA (2007) Visual field maps in human cortex. Neuron 56:366–383

    Article  CAS  PubMed  Google Scholar 

  82. Orban GA et al (2006) Mapping the parietal cortex of human and non-human primates. Neuropsychologia 44:2647–2667

    Article  PubMed  Google Scholar 

  83. Larsson J, Heeger DJ (2006) Two retinotopic visual areas in human lateral occipital cortex. J Neurosci 26:13128–13142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lyon DC, Kaas JH (2002) Evidence from V1 connections for both dorsal and ventral subdivisions of V3 in three species of new world monkeys. J Comp Neurol 449:281–297

    Article  PubMed  Google Scholar 

  85. Gattass R, Sousa AP, Gross CG (1988) Visuotopic organization and extent of V3 and V4 of the macaque. J Neurosci 8:1831–1845

    CAS  PubMed  Google Scholar 

  86. Vanduffel W et al (2002) Extracting 3D from motion: differences in human and monkey intraparietal cortex. Science 298:413–415

    Article  CAS  PubMed  Google Scholar 

  87. Van Oostende S, Sunaert S, Van Hecke P, Marchal G, Orban GA (1997) The kinetic occipital (KO) region in man: an fMRI study. Cereb Cortex 7:690–701

    Article  PubMed  Google Scholar 

  88. Nelissen K, Vanduffel W, Sunaert S, Janssen P, Tootell RB, Orban GA (2000) Processing of kinetic boundaries investigated using fMRI and double-label deoxyglucose technique in awake monkeys. Soc Neurosci Abstr 26:1584

    Google Scholar 

  89. Brewer AA, Liu J, Wade AR, Wandell BA (2005) Visual field maps and stimulus selectivity in human ventral occipital cortex. Nat Neurosci 8:1102–1109

    Article  CAS  PubMed  Google Scholar 

  90. Smith AT, Greenlee MW, Singh KD, Kraemer FM, Hennig J (1998) The processing of first- and second-order motion in human visual cortex assessed by functional magnetic resonance imaging (fMRI). J Neurosci 18:3816–3830

    CAS  PubMed  Google Scholar 

  91. Hansen KA, Kay KN, Gallant JL (2007) Topographic organization in and near human visual area V4. J Neurosci 27:11896–11911

    Article  CAS  PubMed  Google Scholar 

  92. Ferri S, Kolster H, Jastorff J, Orban GA (2013) The overlap of the EBA and the MT/V5 cluster. Neuroimage 66:412–425

    Article  CAS  PubMed  Google Scholar 

  93. Boussaoud D, Desimone R, Ungerleider LG (1991) Visual topography of area TEO in the macaque. J Comp Neurol 306:554–575

    Article  CAS  PubMed  Google Scholar 

  94. Janssens T, Zhu Q, Popivanov ID, Vanduffel W (2014) Probabilistic and single-subject retinotopic maps reveal the topographic organization of face patches in the macaque cortex. J Neurosci 34:10156–10167

    Article  CAS  PubMed  Google Scholar 

  95. Kolster H, Janssens T, Orban GA, Vanduffel W (2014) The retinotopic organization of macaque occipitotemporal cortex anterior to V4 and caudoventral to the middle temporal (MT) cluster. J Neurosci 34:10168–10191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wandell BA, Brewer AA, Dougherty RF (2005) Visual field map clusters in human cortex. Philos Trans R Soc Lond B Biol Sci 360:693–707

    Article  PubMed  PubMed Central  Google Scholar 

  97. Tootell RBH, Tsao D, Vanduffel W (2003) Neuroimaging weighs in: humans meet macaques in “primate” visual cortex. J Neurosci 23:3981–3989

    CAS  PubMed  Google Scholar 

  98. Swisher JD, Halko MA, Merabet LB, McMains SA, Somers DC (2007) Visual topography of human intraparietal sulcus. J Neurosci 27:5326–5337

    Article  CAS  PubMed  Google Scholar 

  99. Claeys KG, Lindsey DT, De Schutter E, Orban GA (2003) A higher order motion region in human inferior parietal lobule: evidence from fMRI. Neuron 40:631–642

    Article  CAS  PubMed  Google Scholar 

  100. Orban GA, Sunaert S, Todd JT, Van Hecke P, Marchal G (1999) Human cortical regions involved in extracting depth from motion. Neuron 24:929–940

    Article  CAS  PubMed  Google Scholar 

  101. Kolster H, Peeters R, Orban GA (2011) Ten retinotopically organized areas in human paritetal cortex. Soc Neurosci Abstr 851.10

    Google Scholar 

  102. Arcaro MJ, Pinsk MA, Li X, Kastner S (2011) Visuotopic organization of macaque posterior parietal cortex: a functional magnetic resonance imaging study. J Neurosci 31:2064–2078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Orban GA, Zhu Q, Vanduffel W (2014) The transition in the ventral stream from feature to real-world entity representations. Front Psychol 5:695

    PubMed  PubMed Central  Google Scholar 

  104. Pitzalis S et al (2006) Wide-field retinotopy defines human cortical visual area v6. J Neurosci 26:7962–7973

    Article  CAS  PubMed  Google Scholar 

  105. Pitzalis S et al (2013) The human homologue of macaque area V6A. Neuroimage 82:517–530

    Article  CAS  PubMed  Google Scholar 

  106. Konen CS, Kastner S (2008) Two hierarchically organized neural systems for object information in human visual cortex. Nat Neurosci 11:224–231

    Article  CAS  PubMed  Google Scholar 

  107. Silver MA, Ress D, Heeger DJ (2005) Topographic maps of visual spatial attention in human parietal cortex. J Neurophysiol 94:1358–1371

    Article  PubMed  PubMed Central  Google Scholar 

  108. Sereno MI, Pitzalis S, Martinez A (2001) Mapping of contralateral space in retinotopic coordinates by a parietal cortical area in humans. Science 294:1350–1354

    Article  CAS  PubMed  Google Scholar 

  109. Schluppeck D, Curtis CE, Glimcher PW, Heeger DJ (2006) Sustained activity in topographic areas of human posterior parietal cortex during memory-guided saccades. J Neurosci 26:5098–5108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Schluppeck D, Glimcher P, Heeger DJ (2005) Topographic organization for delayed saccades in human posterior parietal cortex. J Neurophysiol 94:1372–1384

    Article  PubMed  PubMed Central  Google Scholar 

  111. Wang L, Mruczek REB, Arcaro MJ, Kastner S (2015) Probabilistic maps of visual topography in human cortex. Cereb Cortex 25(10):3911–3931

    Article  CAS  PubMed  Google Scholar 

  112. Orban GA, Jastorff J (2014) Functional mapping of motion regions in human and nonhuman primates. In: Chalupa LM, Werner JS (eds) The new visual neuroscience, vol 1. MIT Press, Cambridge, MA, pp 777–791

    Google Scholar 

  113. Arcaro MJ, McMains SA, Singer BD, Kastner S (2009) Retinotopic organization of human ventral visual cortex. J Neurosci 29:10638–10652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sunaert S, Van Hecke P, Marchal G, Orban GA (2000) Attention to speed of motion, speed discrimination, and task difficulty: an fMRI study. Neuroimage 11:612–623

    Article  CAS  PubMed  Google Scholar 

  115. Rees G, Friston K, Koch C (2000) A direct quantitative relationship between the functional properties of human and macaque V5. Nat Neurosci 3:716–723

    Article  CAS  PubMed  Google Scholar 

  116. Pitzalis S et al (2010) Human V6: the medial motion area. Cereb Cortex 20:411–424

    Article  CAS  PubMed  Google Scholar 

  117. Binkofski F et al (1998) Human anterior intraparietal area subserves prehension: a combined lesion and functional MRI activation study. Neurology 50:1253–1259

    Article  CAS  PubMed  Google Scholar 

  118. Orban GA et al (2003) Similarities and differences in motion processing between the human and macaque brain: evidence from fMRI. Neuropsychologia 41:1757–1768

    Article  PubMed  Google Scholar 

  119. Stout D, Chaminade T (2007) The evolutionary neuroscience of tool making. Neuropsychologia 45:1091–1100

    Article  PubMed  Google Scholar 

  120. Peuskens H et al (2001) Human brain regions involved in heading estimation. J Neurosci 21:2451–2461

    CAS  PubMed  Google Scholar 

  121. Gori M et al (2012) Long integration time for accelerating and decelerating visual, tactile and visuo-tactile stimuli. Multisens Res 26:53–68

    Article  Google Scholar 

  122. Braddick OJ, O’Brien JMD, Wattam-Bell J, Atkinson J, Turner R (2000) Form and motion coherence activate independent, but not dorsal/ventral segregated, networks in the human brain. Curr Biol 10:731–734

    Article  CAS  PubMed  Google Scholar 

  123. Eickhoff SB, Grefkes C, Zilles K, Fink GR (2007) The somatotopic organization of cytoarchitectonic areas on the human parietal operculum. Cereb Cortex 17:1800–1811

    Article  PubMed  Google Scholar 

  124. Grüsser OJ, Pause M, Schreiter U (1990) Vestibular neurones in the parieto-insular cortex of monkeys (Macaca fascicularis): visual and neck receptor responses. J Physiol 430:559–583

    Article  PubMed  PubMed Central  Google Scholar 

  125. Grüsser O-J, Guldin WO, Mirring S, Salah-Eldin A (1994) Comparative physiological and anatomical studies of the primate vestibular cortex. In: Albowitz B, Albus K, Kuhnt U, Nothdurft H-C, Wahle P (eds) Structural and functional organization of the neocortex. Proceedings of a Symposium in the Memory of Otto D. Creutzfeldt, May 1993, Exp Brain Res Series 24. pp 358–371

    Google Scholar 

  126. Orban GA et al (1995) A motion area in human visual cortex. Proc Natl Acad Sci U S A 92:993–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Dupont P et al (1997) The kinetic occipital region in human visual cortex. Cereb Cortex 7:283–292

    Article  CAS  PubMed  Google Scholar 

  128. Zeki S, Perry RJ, Bartels A (2003) The processing of kinetic contours in the brain. Cereb Cortex 13:189–202

    Article  CAS  PubMed  Google Scholar 

  129. Tyler CW, Likova LT, Kontsevich LL, Wade AR (2006) The specificity of cortical region KO to depth structure. Neuroimage 30:228–238

    Article  PubMed  Google Scholar 

  130. Downing PE, Jiang Y, Shuman M, Kanwisher N (2001) A cortical area selective for visual processing of the human body. Science 293:2470–2473

    Article  CAS  PubMed  Google Scholar 

  131. Lu ZL, Sperling G (1995) Attention-generated apparent motion. Nature 377:237–239

    Article  CAS  PubMed  Google Scholar 

  132. Lu ZL, Lesmes LA, Sperling G (1999) The mechanism of isoluminant chromatic motion perception. Proc Natl Acad Sci U S A 96:8289–8294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ungerleider LG, Mishkin M (1982) Two cortical visual systems. Anal Vis Behav 549:549–586

    Google Scholar 

  134. Malach R et al (1995) Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc Natl Acad Sci U S A 92:8135–8139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kanwisher N, Chun MM, McDermott J, Ledden PJ (1996) Functional imaging of human visual recognition. Cogn Brain Res 5:55–67

    Article  CAS  Google Scholar 

  136. Sawamura H, Georgieva S, Vogels R, Vanduffel W, Orban GA (2005) Using functional magnetic resonance imaging to assess adaptation and size invariance of shape processing by humans and monkeys. J Neurosci 25:4294–4306

    Article  CAS  PubMed  Google Scholar 

  137. Engell AD, McCarthy G (2013) Probabilistic atlases for face and biological motion perception: an analysis of their reliability and overlap. Neuroimage 74:140–151

    Article  PubMed  PubMed Central  Google Scholar 

  138. Zhu Q et al (2012) Dissimilar processing of emotional facial expressions in human and monkey temporal cortex. Neuroimage 66C:402–411

    Google Scholar 

  139. Rajimehr R, Young JC, Tootell RBH (2009) An anterior temporal face patch in human cortex, predicted by macaque maps. Proc Natl Acad Sci U S A 106:1995–2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Pitcher D, Dilks DD, Saxe RR, Triantafyllou C, Kanwisher N (2011) Differential selectivity for dynamic versus static information in face-selective cortical regions. Neuroimage 56:2356–2363

    Article  PubMed  Google Scholar 

  141. Nasr S et al (2011) Scene-selective cortical regions in human and nonhuman primates. J Neurosci 31:13771–13785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Jastorff J, Orban GA (2009) Human functional magnetic resonance imaging reveals separation and integration of shape and motion cues in biological motion processing. J Neurosci 29:7315–7329

    Article  CAS  PubMed  Google Scholar 

  143. Joly O et al (2012) Processing of vocalizations in humans and monkeys: a comparative fMRI study. Neuroimage 62:1376–1389

    Article  PubMed  Google Scholar 

  144. Jastorff J, Begliomini C, Fabbri-Destro M, Rizzolatti G, Orban GA (2010) Coding observed motor acts: different organizational principles in the parietal and premotor cortex of humans. J Neurophysiol 104:128–140

    Article  PubMed  Google Scholar 

  145. Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47

    Article  CAS  PubMed  Google Scholar 

  146. Tanaka K, Saito H, Fukada Y, Moriya M (1991) Coding visual images of objects in the inferotemporal cortex of the macaque monkey. J Neurophysiol 66:170–189

    CAS  PubMed  Google Scholar 

  147. Grill-Spector K, Malach R (2004) The human visual cortex. Annu Rev Neurosci 27:649–677

    Article  CAS  PubMed  Google Scholar 

  148. Quiroga RQ, Reddy L, Kreiman G, Koch C, Fried I (2005) Invariant visual representation by single neurons in the human brain. Nature 435:1102–1107

    Article  CAS  PubMed  Google Scholar 

  149. Reddy L, Kanwisher N (2006) Coding of visual objects in the ventral stream. Curr Opin Neurobiol 16:408–414

    Article  CAS  PubMed  Google Scholar 

  150. Privman E et al (2007) Enhanced category tuning revealed by intracranial electroencephalograms in high-order human visual areas. J Neurosci 27:6234–6242

    Article  CAS  PubMed  Google Scholar 

  151. Altmann CF, Bülthoff HH, Kourtzi Z (2003) Perceptual organization of local elements into global shapes in the human visual cortex. Curr Biol 13:342–349

    Article  CAS  PubMed  Google Scholar 

  152. Kourtzi Z, Tolias AS, Altmann CF, Augath M, Logothetis NK (2003) Integration of local features into global shapes: monkey and human fMRI studies. Neuron 37:333–346

    Article  CAS  PubMed  Google Scholar 

  153. Kourtzi Z, Kanwisher N (2001) Human lateral occipital complex representation of perceived object shape by the human lateral occipital complex. Science 293:1506–1509

    Article  CAS  PubMed  Google Scholar 

  154. Downing PE, Chan AW-Y, Peelen MV, Dodds CM, Kanwisher N (2006) Domain specificity in visual cortex. Cereb Cortex 16:1453–1461

    Article  CAS  PubMed  Google Scholar 

  155. Freedman DJ, Riesenhuber M, Poggio T, Miller EK (2003) A comparison of primate prefrontal and inferior temporal cortices during visual categorization. J Neurosci 23:5235–5246

    CAS  PubMed  Google Scholar 

  156. Vogels R (1999) Categorization of complex visual images by rhesus monkeys. Part 2: Single-cell study. Eur J Neurosci 11:1239–1255

    Article  CAS  PubMed  Google Scholar 

  157. Levy I, Hasson U, Avidan G, Hendler T, Malach R (2001) Center-periphery organization of human object areas. Nat Neurosci 4:533–539

    CAS  PubMed  Google Scholar 

  158. Hasson U, Levy I, Behrmann M, Hendler T, Malach R (2002) Eccentricity bias as an organizing principle for human high-order object areas. Neuron 34:479–490

    Article  CAS  PubMed  Google Scholar 

  159. Rolls ET (2000) Functions of the primate temporal lobe cortical visual areas in invariant visual object and face recognition. Neuron 27:205–218

    Article  CAS  PubMed  Google Scholar 

  160. Freiwald WA, Tsao DY (2010) Functional compartmentalization and viewpoint generalization within the macaque face-processing system. Science 330:845–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Cumming BG, DeAngelis GC (2001) The physiology of stereopsis. Annu Rev Neurosci 24:203–238

    Article  CAS  PubMed  Google Scholar 

  162. Parker AJ (2007) Binocular depth perception and the cerebral cortex. Nat Rev Neurosci 8:379–391

    Article  CAS  PubMed  Google Scholar 

  163. Neri P, Bridge H, Heeger DJ (2004) Stereoscopic processing of absolute and relative disparity in human visual cortex. J Neurophysiol 92:1880–1891

    Article  PubMed  Google Scholar 

  164. Orban GA, Janssen P, Vogels R (2006) Extracting 3D structure from disparity. Trends Neurosci 29:466–473

    Article  CAS  PubMed  Google Scholar 

  165. Gulyas B, Roland PE (1994) Processing and analysis of form, colour and binocular disparity in the human brain: functional anatomy by positron emission tomography. Eur J Neurosci 6:1811–1828

    Article  CAS  PubMed  Google Scholar 

  166. Mendola JD, Dale AM, Fischl B, Liu AK, Tootell RB (1999) The representation of illusory and real contours in human cortical visual areas revealed by functional magnetic resonance imaging. J Neurosci 19:8560–8572

    CAS  PubMed  Google Scholar 

  167. Backus BT, Fleet DJ, Parker AJ, Heeger DJ (2001) Human cortical activity correlates with stereoscopic depth perception. J Neurophysiol 86:2054–2068

    CAS  PubMed  Google Scholar 

  168. Tsao DY et al (2003) Stereopsis activates V3A and caudal intraparietal areas in macaques and humans. Neuron 39:555–568

    Article  CAS  PubMed  Google Scholar 

  169. Brouwer GJ, van Ee R, Schwarzbach J (2005) Activation in visual cortex correlates with the awareness of stereoscopic depth. J Neurosci 25:10403–10413

    Article  CAS  PubMed  Google Scholar 

  170. Gilaie-Dotan S, Ullman S, Kushnir T, Malach R (2002) Shape-selective stereo processing in human object-related visual areas. Hum Brain Mapp 15:67–79

    Article  PubMed  Google Scholar 

  171. Orban GA (2007) Three-dimensional shape: cortical mechanisms of shape extraction. In: Masland RH, Albright T (eds) Handbook of the senses, vol 5, Vision. Elsevier, Amsterdam

    Google Scholar 

  172. Durand JB et al (2007) Anterior regions of monkey parietal cortex process visual 3D shape. Neuron 55:493–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. James TW et al (2002) Haptic study of three-dimensional objects activates extrastriate visual areas. Neuropsychologia 40:1706–1714

    Article  PubMed  Google Scholar 

  174. Kourtzi Z, Erb M, Grodd W, Bülthoff HH (2003) Representation of the perceived 3-D object shape in the human lateral occipital complex. Cereb Cortex 13:911–920

    Article  PubMed  Google Scholar 

  175. Murray SO, Olshausen BA, Woods DL (2003) Processing shape, motion and three-dimensional shape-from-motion in the human cortex. Cereb Cortex 13:508–516

    Article  PubMed  Google Scholar 

  176. Sereno ME, Trinath T, Augath M, Logothetis NK (2002) Three-dimensional shape representation in monkey cortex. Neuron 33:635–652

    Article  CAS  PubMed  Google Scholar 

  177. Shikata E et al (2001) Surface orientation discrimination activates caudal and anterior intraparietal sulcus in humans: an event-related fMRI study. J Neurophysiol 85:1309–1314

    CAS  PubMed  Google Scholar 

  178. Taira M, Nose I, Inoue K, Tsutsui K (2001) Cortical areas related to attention to 3D surface structures based on shading: an fMRI study. Neuroimage 14:959–966

    Article  CAS  PubMed  Google Scholar 

  179. Welchman AE, Deubelius A, Conrad V, Bülthoff HH, Kourtzi Z (2005) 3D shape perception from combined depth cues in human visual cortex. Nat Neurosci 8:820–827

    Article  CAS  PubMed  Google Scholar 

  180. Perrett DI et al (1985) Visual analysis of body movements by neurones in the temporal cortex of the macaque monkey: a preliminary report. Behav Brain Res 16:153–170

    Article  CAS  PubMed  Google Scholar 

  181. Abdollahi RO, Jastorff J, Orban GA (2013) Common and segregated processing of observed actions in human SPL. Cereb Cortex 23:2734–2753

    Article  PubMed  Google Scholar 

  182. Jastorff J, Popivanov ID, Vogels R, Vanduffel W, Orban GA (2012) Integration of shape and motion cues in biological motion processing in the monkey STS. Neuroimage 60:911–921

    Article  PubMed  Google Scholar 

  183. Grossman E et al (2000) Brain areas involved in perception of biological motion. J Cogn Neurosci 12:711–720

    Article  CAS  PubMed  Google Scholar 

  184. Glasser MF, Robinson EC, Coalson TS, Smith SM, Jenkinson M, Hacker CS, Laumann TO, Van Essen DC (2014) Partial correlation functional connectivity gradients for cortical parcellation: methods and multi-modal comparisons SFN abstract WCC 147B

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy A. Orban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Orban, G.A., Ferri, S. (2016). Functional Imaging of the Human Visual System. In: Filippi, M. (eds) fMRI Techniques and Protocols. Neuromethods, vol 119. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-5611-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-5611-1_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-5609-8

  • Online ISBN: 978-1-4939-5611-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics