Advertisement

fMRI of Pain

  • Emma G. Duerden
  • Roberta Messina
  • Maria A. Rocca
  • Massimo Filippi
  • Gary H. DuncanEmail author
Protocol
Part of the Neuromethods book series (NM, volume 119)

Abstract

Pain was first considered to be a hard-wired system in which noxious input was passively transmitted along sensory channels to the brain. However, today it is generally accepted that the experience of pain is not simply driven by noxious stimulus characteristics, but that the brain is the structure where the subjective perception of pain emerges and is critically linked with other cognitive processes.

The field of pain research has progressed immensely due to the advancement of brain imaging techniques. The initial goal of this research was to expand our understanding of the cerebral mechanisms underlying the perception of pain; more recently the research objectives have shifted toward chronic pain—understanding its origins, developing methods for its diagnosis, and exploring potential avenues for its treatment. While several different neuroimaging approaches have certain advantages for the study of pain, fMRI has ultimately become the most widely utilized imaging technique over the past decade because of its noninvasive nature, high-temporal and spatial resolution, and general availability; thus, the following chapter will focus on fMRI and the special aspects of this technique that are particular to pain research.

Key words

Pain Functional neuroimaging Brain Perception 

References

  1. 1.
    Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60(4):389–443CrossRefGoogle Scholar
  2. 2.
    Head H, Holmes G (1911) Sensory disturbances from cerebral lesions. Brain 34(2–3):102–254CrossRefGoogle Scholar
  3. 3.
    Talbot J et al (1991) Multiple representations of pain in human cerebral cortex. Science 251(4999):1355–1358PubMedCrossRefGoogle Scholar
  4. 4.
    Jones AKP et al (1991) Cortical and subcortical localization of response to pain in man using positron emission tomography. Proc R Soc B Biol Sci 244(1309):39–44CrossRefGoogle Scholar
  5. 5.
    Apkarian AV et al (1992) Persistent pain inhibits contralateral somatosensory cortical activity in humans. Neurosci Lett 140(2):141–147PubMedCrossRefGoogle Scholar
  6. 6.
    Davis KD et al (1995) fMRI of human somatosensory and cingulate cortex during painful electrical nerve stimulation. Neuroreport 7(1):321–325PubMedCrossRefGoogle Scholar
  7. 7.
    Flor H (2000) The functional organization of the brain in chronic pain. Prog Brain Res 129:313–322PubMedCrossRefGoogle Scholar
  8. 8.
    Tracey I, Mantyh PW (2007) The cerebral signature for pain perception and its modulation. Neuron 55(3):377–391PubMedCrossRefGoogle Scholar
  9. 9.
    Wager TD et al (2013) An fMRI-based neurologic signature of physical pain. N Engl J Med 368(15):1388–1397PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    deCharms RC et al (2005) Control over brain activation and pain learned by using real-time functional MRI. Proc Natl Acad Sci 102(51):18626–18631PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Rance M et al (2014) Real time fMRI feedback of the anterior cingulate and posterior insular cortex in the processing of pain. Hum Brain Mapp 35(12):5784–5798PubMedCrossRefGoogle Scholar
  12. 12.
    Chen JI et al (2002) Differentiating noxious- and innocuous-related activation of human somatosensory cortices using temporal analysis of fMRI. J Neurophysiol 88(1):464–474PubMedGoogle Scholar
  13. 13.
    Iramina K et al (1999) Effects of stimulus intensity on fMRI and MEG in somatosensory cortex using electrical stimulation. IEEE Trans Magn 35(5):4106–4108CrossRefGoogle Scholar
  14. 14.
    Brooks J, Tracey I (2005) From nociception to pain perception: imaging the spinal and supraspinal pathways. J Anat 207(1):19–33PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Mackey S et al (2006) FMRI evidence of noxious thermal stimuli encoding in the human spinal cord. J Pain 7(4):S25CrossRefGoogle Scholar
  16. 16.
    Rollnik JD, Schmitz N, Kugler J (1999) Anxiety moderates cardiovascular responses to painful stimuli during sphygmomanometry. Int J Psychophysiol 33(3):253–257PubMedCrossRefGoogle Scholar
  17. 17.
    Mobascher A et al (2010) Brain activation patterns underlying fast habituation to painful laser stimuli. Int J Psychophysiol 75(1):16–24PubMedCrossRefGoogle Scholar
  18. 18.
    Becerra LR et al (1999) Human brain activation under controlled thermal stimulation and habituation to noxious heat: an fMRI study. Magn Reson Med 41(5):1044–1057PubMedCrossRefGoogle Scholar
  19. 19.
    Price DD et al (1994) A comparison of pain measurement characteristics of mechanical visual analogue and simple numerical rating scales. Pain 56(2):217–226PubMedCrossRefGoogle Scholar
  20. 20.
    Rainville P et al (2004) Rapid deterioration of pain sensory-discriminative information in short-term memory. Pain 110(3):605–615PubMedCrossRefGoogle Scholar
  21. 21.
    Charron J, Rainville P, Marchand S (2006) Direct comparison of placebo effects on clinical and experimental pain. Clin J Pain 22(2):204–211PubMedCrossRefGoogle Scholar
  22. 22.
    Price DD et al (1999) An analysis of factors that contribute to the magnitude of placebo analgesia in an experimental paradigm. Pain 83(2):147–156PubMedCrossRefGoogle Scholar
  23. 23.
    Apkarian AV et al (1999) Differentiating cortical areas related to pain perception from stimulus identification: temporal analysis of fMRI activity. J Neurophysiol 81(6):2956–2963PubMedGoogle Scholar
  24. 24.
    Porro CA et al (2004) Percept-related activity in the human somatosensory system: functional magnetic resonance imaging studies. Magn Reson Imaging 22(10):1539–1548PubMedCrossRefGoogle Scholar
  25. 25.
    Andrew D, Greenspan JD (1999) Peripheral coding of tonic mechanical cutaneous pain: comparison of nociceptor activity in rat and human psychophysics. J Neurophysiol 82(5):2641–2648PubMedGoogle Scholar
  26. 26.
    Adriaensen H et al (1984) Nociceptor discharges and sensations due to prolonged noxious mechanical stimulation--a paradox. Hum Neurobiol 3(1):53–58PubMedGoogle Scholar
  27. 27.
    Gallez A et al (2005) Attenuation of sensory and affective responses to heat pain: evidence for contralateral mechanisms. J Neurophysiol 94(5):3509–3515PubMedCrossRefGoogle Scholar
  28. 28.
    Bingel U et al (2007) Habituation to painful stimulation involves the antinociceptive system. Pain 131(1):21–30PubMedCrossRefGoogle Scholar
  29. 29.
    Valeriani M et al (2003) Reduced habituation to experimental pain in migraine patients: a CO2 laser evoked potential study. Pain 105(1):57–64PubMedCrossRefGoogle Scholar
  30. 30.
    Nickel FT et al (2013) Brain correlates of short-term habituation to repetitive electrical noxious stimulation. Eur J Pain 18(1):56–66PubMedCrossRefGoogle Scholar
  31. 31.
    Willis WD Jr (1985) The pain system. The neural basis of nociceptive transmission in the mammalian nervous system. Pain Headache 8:1–346PubMedGoogle Scholar
  32. 32.
    Adriaensen H et al (1983) Response properties of thin myelinated (A-delta) fibers in human skin nerves. J Neurophysiol 49(1):111–122PubMedGoogle Scholar
  33. 33.
    Ochoa J, Torebjörk E (1989) Sensations evoked by intraneural microstimulation of C nociceptor fibres in human skin nerves. J Physiol 415(1):583–599PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Cervero F, Iggo A (1980) The substantia gelatinosa of the spinal cord: a critical review. Brain 103(4):717–772PubMedCrossRefGoogle Scholar
  35. 35.
    Wilson P, Kitchener PD (1996) Plasticity of cutaneous primary afferent projections to the spinal dorsal horn. Prog Neurobiol 48(2):105–129PubMedCrossRefGoogle Scholar
  36. 36.
    Craig AD et al (1994) A thalamic nucleus specific for pain and temperature sensation. Nature 372(6508):770–773PubMedCrossRefGoogle Scholar
  37. 37.
    Legrain V et al (2011) The pain matrix reloaded: a salience detection system for the body. Prog Neurobiol 93(1):111–124PubMedCrossRefGoogle Scholar
  38. 38.
    Bromm B, Treede RD (1984) Nerve fibre discharges, cerebral potentials and sensations induced by CO2 laser stimulation. Hum Neurobiol 3(1):33–40PubMedGoogle Scholar
  39. 39.
    Carmon A, Dotan Y, Sarne Y (1978) Correlation of subjective pain experience with cerebral evoked responses to noxious thermal stimulations. Exp Brain Res 33(3–4):445–453PubMedGoogle Scholar
  40. 40.
    Iannetti GD et al (2004) Aδ nociceptor response to laser stimuli: selective effect of stimulus duration on skin temperature, brain potentials and pain perception. Clin Neurophysiol 115(11):2629–2637PubMedCrossRefGoogle Scholar
  41. 41.
    Spiegel J, Hansen C, Treede RD (2000) Clinical evaluation criteria for the assessment of impaired pain sensitivity by thulium-laser evoked potentials. Clin Neurophysiol 111(4):725–735PubMedCrossRefGoogle Scholar
  42. 42.
    Leandri M et al (2006) Measurement of skin temperature after infrared laser stimulation. Neurophysiol Clin 36(4):207–218PubMedCrossRefGoogle Scholar
  43. 43.
    Helmchen C et al (2008) Common neural systems for contact heat and laser pain stimulation reveal higher-level pain processing. Hum Brain Mapp 29(9):1080–1091PubMedCrossRefGoogle Scholar
  44. 44.
    Iannetti GD, Mouraux A (2010) From the neuromatrix to the pain matrix (and back). Exp Brain Res 205(1):1–12PubMedCrossRefGoogle Scholar
  45. 45.
    Apkarian AV et al (2005) Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 9(4):463–484PubMedCrossRefGoogle Scholar
  46. 46.
    Melzack R, Casey KL (1968) Sensory, motivational and central control determinants of pain: a new conceptual model. In: Kenshalo DR (ed) The skin senses. Charles C. Thomas Publishers, Springfield, IL, pp 423–443Google Scholar
  47. 47.
    Tracey I (2008) Imaging pain. Br J Anaesth 101(1):32–39PubMedCrossRefGoogle Scholar
  48. 48.
    Kaas J et al (1979) Multiple representations of the body within the primary somatosensory cortex of primates. Science 204(4392):521–523PubMedCrossRefGoogle Scholar
  49. 49.
    Kenshalo DR Jr, Isensee O (1983) Responses of primate SI cortical neurons to noxious stimuli. J Neurophysiol 50(6):1479–1496PubMedGoogle Scholar
  50. 50.
    Casey KL et al (1996) Comparison of human cerebral activation pattern during cutaneous warmth, heat pain, and deep cold pain. J Neurophysiol 76(1):571–581PubMedGoogle Scholar
  51. 51.
    Gelnar PA et al (1998) Fingertip representation in the human somatosensory cortex: an fMRI study. Neuroimage 7(4):261–283PubMedCrossRefGoogle Scholar
  52. 52.
    Liang M, Mouraux A, Iannetti GD (2011) Parallel processing of nociceptive and non-nociceptive somatosensory information in the human primary and secondary somatosensory cortices: evidence from dynamic causal modeling of functional magnetic resonance imaging data. J Neurosci 31(24):8976–8985PubMedCrossRefGoogle Scholar
  53. 53.
    Cheng JC et al (2015) Individual differences in temporal summation of pain reflect pronociceptive and antinociceptive brain structure and function. J Neurosci 35(26):9689–9700PubMedCrossRefGoogle Scholar
  54. 54.
    Derbyshire GSW, Jones PAK (1998) Cerebral responses to a continual tonic pain stimulus measured using positron emission tomography. Pain 76(1):127–135PubMedCrossRefGoogle Scholar
  55. 55.
    Disbrow E et al (1998) Somatosensory cortex: a comparison of the response to noxious thermal, mechanical, and electrical stimuli using functional magnetic resonance imaging. Hum Brain Mapp 6(3):150–159PubMedCrossRefGoogle Scholar
  56. 56.
    Vierck CJ et al (2013) Role of primary somatosensory cortex in the coding of pain. Pain 154(3):334–344PubMedCrossRefGoogle Scholar
  57. 57.
    Tommerdahl M et al (1996) Anterior parietal cortical response to tactile and skin-heating stimuli applied to the same skin site. J Neurophysiol 75(6):2662–2670PubMedGoogle Scholar
  58. 58.
    Bushnell MC et al (1999) Pain perception: is there a role for primary somatosensory cortex? Proc Natl Acad Sci 96(14):7705–7709PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Seminowicz DA, Mikulis DJ, Davis KD (2004) Cognitive modulation of pain-related brain responses depends on behavioral strategy. Pain 112(1):48–58PubMedCrossRefGoogle Scholar
  60. 60.
    Oshiro Y et al (2007) Brain mechanisms supporting spatial discrimination of pain. J Neurosci 27(13):3388–3394PubMedCrossRefGoogle Scholar
  61. 61.
    Andersson JLR et al (1997) Somatotopic organization along the central sulcus, for pain localization in humans, as revealed by positron emission tomography. Exp Brain Res 117(2):192–199PubMedCrossRefGoogle Scholar
  62. 62.
    DaSilva AF et al (2002) Somatotopic activation in the human trigeminal pain pathway. J Neurosci 22(18):8183–8192PubMedGoogle Scholar
  63. 63.
    Ogino Y, Nemoto H, Goto F (2005) Somatotopy in human primary somatosensory cortex in pain system. Anesthesiology 103(4):821–827PubMedCrossRefGoogle Scholar
  64. 64.
    Kaas JH (1983) What, if anything, is SI? Organization of first somatosensory area of cortex. Physiol Rev 63(1):206–231PubMedGoogle Scholar
  65. 65.
    Albanese MC et al (2007) Memory traces of pain in human cortex. J Neurosci 27(17):4612–4620PubMedCrossRefGoogle Scholar
  66. 66.
    Schmid J et al (2015) Neural underpinnings of nocebo hyperalgesia in visceral pain: a fMRI study in healthy volunteers. Neuroimage 120:114–122PubMedCrossRefGoogle Scholar
  67. 67.
    Greenspan JD, Lee RR, Lenz FA (1999) Pain sensitivity alterations as a function of lesion location in the parasylvian cortex. Pain 81(3):273–282PubMedCrossRefGoogle Scholar
  68. 68.
    Ploner M, Freund HJ, Schnitzler A (1999) Pain affect without pain sensation in a patient with a postcentral lesion. Pain 81(1):211–214PubMedCrossRefGoogle Scholar
  69. 69.
    Coghill RC et al (1999) Pain intensity processing within the human brain: a bilateral, distributed mechanism. J Neurophysiol 82(4):1934–1943PubMedGoogle Scholar
  70. 70.
    Maihöfner C, Herzner B, Otto Handwerker H (2006) Secondary somatosensory cortex is important for the sensory-discriminative dimension of pain: a functional MRI study. Eur J Neurosci 23(5):1377–1383PubMedCrossRefGoogle Scholar
  71. 71.
    Gracely RH et al. (2004) Pain catastrophizing and neural responses to pain among persons with fibromyalgia. Brain 127(4):835–843PubMedCrossRefGoogle Scholar
  72. 72.
    Sawamoto N et al (2000) Expectation of pain enhances responses to nonpainful somatosensory stimulation in the anterior cingulate cortex and parietal operculum/posterior insula: an event-related functional magnetic resonance imaging study. J Neurosci 20(19):7438–7445PubMedGoogle Scholar
  73. 73.
    Oertel BG et al (2012) Separating brain processing of pain from that of stimulus intensity. Hum Brain Mapp 33(4):883–894PubMedCrossRefGoogle Scholar
  74. 74.
    Wiech K et al (2014) Differential structural and resting state connectivity between insular subdivisions and other pain-related brain regions. Pain 155(10):2047–2055PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Schilder P, Stengel E (1932) Asymbolia for pain. Arch Neurol Psychiatry 25(3):598–600CrossRefGoogle Scholar
  76. 76.
    Berthier M, Starkstein S, Leiguarda R (1988) Asymbolia for pain: a sensory-limbic disconnection syndrome. Ann Neurol 24(1):41–49PubMedCrossRefGoogle Scholar
  77. 77.
    Wiech K, Ploner M, Tracey I (2008) Neurocognitive aspects of pain perception. Trends Cogn Sci 12(8):306–313PubMedCrossRefGoogle Scholar
  78. 78.
    Maihöfner C, Handwerker HO (2005) Differential coding of hyperalgesia in the human brain: a functional MRI study. Neuroimage 28(4):996–1006PubMedCrossRefGoogle Scholar
  79. 79.
    Peltz E et al (2011) Functional connectivity of the human insular cortex during noxious and innocuous thermal stimulation. Neuroimage 54(2):1324–1335PubMedCrossRefGoogle Scholar
  80. 80.
    Mazzola L, Isnard J, Mauguiere F (2006) Somatosensory and pain responses to stimulation of the second somatosensory area (SII) in humans. A comparison with SI and insular responses. Cereb Cortex 16(7):960–968PubMedCrossRefGoogle Scholar
  81. 81.
    Segerdahl AR et al (2015) The dorsal posterior insula subserves a fundamental role in human pain. Nat Neurosci 18(4):499–500PubMedCrossRefGoogle Scholar
  82. 82.
    Craig AD (2002) New and old thoughts on the mechanisms of spinal cord injury pain. In: Yezierski RP, Burchiel KJ (eds) Spinal cord injury pain: assessment, mechanisms, management. IASP Press, Seattle 237–264Google Scholar
  83. 83.
    Blomqvist A (2000) Cytoarchitectonic and immunohistochemical characterization of a specific pain and temperature relay, the posterior portion of the ventral medial nucleus, in the human thalamus. Brain 123(3):601–619PubMedCrossRefGoogle Scholar
  84. 84.
    Peyron R et al (2002) Role of operculoinsular cortices in human pain processing: converging evidence from PET, fMRI, dipole modeling, and intracerebral recordings of evoked potentials. Neuroimage 17(3):1336–1346PubMedCrossRefGoogle Scholar
  85. 85.
    Brooks JCW et al (2005) Somatotopic organisation of the human insula to painful heat studied with high resolution functional imaging. Neuroimage 27(1):201–209PubMedCrossRefGoogle Scholar
  86. 86.
    Henderson LA, Rubin TK, Macefield VG (2011) Within-limb somatotopic representation of acute muscle pain in the human contralateral dorsal posterior insula. Hum Brain Mapp 32(10):1592–1601PubMedCrossRefGoogle Scholar
  87. 87.
    Hutchison WD et al (1999) Pain-related neurons in the human cingulate cortex. Nat Neurosci 2(5):403–405PubMedCrossRefGoogle Scholar
  88. 88.
    Jones AKP et al (1991) In vivo distribution of opioid receptors in man in relation to the cortical projections of the medial and lateral pain systems measured with positron emission tomography. Neurosci Lett 126(1):25–28PubMedCrossRefGoogle Scholar
  89. 89.
    Baumgärtner U et al (2007) High opiate receptor binding potential in the human lateral pain system: a (FEDPN)PET study. Clin Neurophysiol 118(4):e12CrossRefGoogle Scholar
  90. 90.
    Pessoa L (2008) On the relationship between emotion and cognition. Nat Rev Neurosci 9(2):148–158PubMedCrossRefGoogle Scholar
  91. 91.
    Pillay PK, Hassenbusch SJ (1992) Bilateral MRI-guided stereotactic cingulotomy for intractable pain. Stereotact Funct Neurosurg 59(1–4):33–38PubMedCrossRefGoogle Scholar
  92. 92.
    Gybels JM, Sweet WH (1989) Neurosurgical treatment of persistent pain. Physiological and pathological mechanisms of human pain. Pain Headache 11:1–402PubMedGoogle Scholar
  93. 93.
    Vogt BA et al (1995) Human cingulate cortex: surface features, flat maps, and cytoarchitecture. J Comp Neurol 359(3):490–506PubMedCrossRefGoogle Scholar
  94. 94.
    Devinsky O, Morrell MJ, Vogt BA (1995) Contributions of anterior cingulate cortex to behaviour. Brain 118(1):279–306PubMedCrossRefGoogle Scholar
  95. 95.
    Vogt BA (2005) Pain and emotion interactions in subregions of the cingulate gyrus. Nat Rev Neurosci 6(7):533–544PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Davis KD et al (1997) Functional MRI of pain- and attention-related activations in the human cingulate cortex. J Neurophysiol 77(6):3370–3380PubMedGoogle Scholar
  97. 97.
    Rainville P et al (1997) Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 277(5328):968–971PubMedCrossRefGoogle Scholar
  98. 98.
    Wilcox CE et al (2015) The subjective experience of pain: an FMRI study of percept-related models and functional connectivity. Pain Med 16(11):2121–33PubMedCrossRefGoogle Scholar
  99. 99.
    Arienzo D et al (2006) Somatotopy of anterior cingulate cortex (ACC) and supplementary motor area (SMA) for electric stimulation of the median and tibial nerves: an fMRI study. Neuroimage 33(2):700–705PubMedCrossRefGoogle Scholar
  100. 100.
    Kroger IL, Menz MM, May A (2015) Dissociating the neural mechanisms of pain consistency and pain intensity in the trigemino-nociceptive system. Cephalalgia [published online before print October 22, 2015, doi: 10.1177/0333102415612765]
  101. 101.
    Casey KL (1999) Forebrain mechanisms of nociception and pain: analysis through imaging. Proc Natl Acad Sci 96(14):7668–7674PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Lobanov OV et al (2013) Frontoparietal mechanisms supporting attention to location and intensity of painful stimuli. Pain 154(9):1758–1768PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Tracey I (2011) Can neuroimaging studies identify pain endophenotypes in humans? Nat Rev Neurol 7(3):173–181PubMedCrossRefGoogle Scholar
  104. 104.
    Wager TD et al (2004) Placebo-induced changes in FMRI in the anticipation and experience of pain. Science 303(5661):1162–1167PubMedCrossRefGoogle Scholar
  105. 105.
    Zald DH (2003) The human amygdala and the emotional evaluation of sensory stimuli. Brain Res Rev 41(1):88–123PubMedCrossRefGoogle Scholar
  106. 106.
    Schneider F et al (2001) Subjective ratings of pain correlate with subcortical-limbic blood flow: an fMRI study. Neuropsychobiology 43(3):175–185PubMedCrossRefGoogle Scholar
  107. 107.
    Berna C et al (2010) Induction of depressed mood disrupts emotion regulation neurocircuitry and enhances pain unpleasantness. Biol Psychiatry 67(11):1083–1090PubMedCrossRefGoogle Scholar
  108. 108.
    Bornhovd K et al (2002) Painful stimuli evoke different stimulus–response functions in the amygdala, prefrontal, insula and somatosensory cortex: a single-trial fMRI study. Brain 125(6):1326–1336PubMedCrossRefGoogle Scholar
  109. 109.
    Schulte LH, Sprenger C, May A (2015) Physiological brainstem mechanisms of trigeminal nociception: an fMRI study at 3T. Neuroimage 124(Pt A):518–525PubMedGoogle Scholar
  110. 110.
    Mason P (2005) Deconstructing endogenous pain modulations. J Neurophysiol 94(3):1659–1663PubMedCrossRefGoogle Scholar
  111. 111.
    Fields HL, Heinricher MM (1985) Anatomy and physiology of a nociceptive modulatory system. Philos Trans R Soc Lond B Biol Sci 308(1136):361–374PubMedCrossRefGoogle Scholar
  112. 112.
    Fields HL (2000) Pain modulation: expectation, opioid analgesia and virtual pain. Prog Brain Res 122:245–253PubMedCrossRefGoogle Scholar
  113. 113.
    La Cesa S et al (2014) fMRI pain activation in the periaqueductal gray in healthy volunteers during the cold pressor test. Magn Reson Imaging 32(3):236–240PubMedCrossRefGoogle Scholar
  114. 114.
    Dunckley P et al (2005) A comparison of visceral and somatic pain processing in the human brainstem using functional magnetic resonance imaging. J Neurosci 25(32):7333–7341PubMedCrossRefGoogle Scholar
  115. 115.
    Tracey I, Iannetti GD (2006) Brainstem functional imaging in humans. Suppl Clin Neurophysiol 58:52–67PubMedCrossRefGoogle Scholar
  116. 116.
    Guimaraes AR et al (1998) Imaging subcortical auditory activity in humans. Hum Brain Mapp 6(1):33–41PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Farina S et al (2003) Pain-related modulation of the human motor cortex. Neurol Res 25(2):130–142PubMedCrossRefGoogle Scholar
  118. 118.
    Chudler EH, Dong WK (1995) The role of the basal ganglia in nociception and pain. Pain 60(1):3–38PubMedCrossRefGoogle Scholar
  119. 119.
    Borsook D et al (2010) A key role of the basal ganglia in pain and analgesia--insights gained through human functional imaging. Mol Pain 6:27PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Tomycz ND, Friedlander RM (2011) The experience of pain and the putamen: a new link found with functional MRI and diffusion tensor imaging. Neurosurgery 69(4):N12–N13CrossRefGoogle Scholar
  121. 121.
    Bingel U et al (2004) Somatotopic representation of nociceptive information in the putamen: an event-related fMRI study. Cereb Cortex 14(12):1340–1345PubMedCrossRefGoogle Scholar
  122. 122.
    Loggia ML et al (2015) Evidence for brain glial activation in chronic pain patients. Brain 138(Pt 3):604–615PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Cahill CM, Stroman PW (2011) Mapping of neural activity produced by thermal pain in the healthy human spinal cord and brain stem: a functional magnetic resonance imaging study. Magn Reson Imaging 29(3):342–352PubMedCrossRefGoogle Scholar
  124. 124.
    Sprenger C, Finsterbusch J, Buchel C (2015) Spinal cord-midbrain functional connectivity is related to perceived pain intensity: a combined spino-cortical FMRI study. J Neurosci 35(10):4248–4257PubMedCrossRefGoogle Scholar
  125. 125.
    Khan HS, Stroman PW (2015) Inter-individual differences in pain processing investigated by functional magnetic resonance imaging of the brainstem and spinal cord. Neuroscience 307:231–241PubMedCrossRefGoogle Scholar
  126. 126.
    Bingel U, Tracey I (2008) Imaging CNS modulation of pain in humans. Physiology (Bethesda) 23:371–380CrossRefGoogle Scholar
  127. 127.
    Levine JD et al (1978) The narcotic antagonist naloxone enhances clinical pain. Nature 272(5656):826–827PubMedCrossRefGoogle Scholar
  128. 128.
    Hohmann AG, Suplita RL (2006) Endocannabinoid mechanisms of pain modulation. AAPS J 8(4):E693–E708PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Tracey I et al (2002) Imaging attentional modulation of pain in the periaqueductal gray in humans. J Neurosci 22(7):2748–2752PubMedGoogle Scholar
  130. 130.
    Porro CA (2003) Functional imaging and pain: behavior, perception, and modulation. Neuroscientist 9(5):354–369PubMedCrossRefGoogle Scholar
  131. 131.
    Bantick SJ et al (2002) Imaging how attention modulates pain in humans using functional MRI. Brain 125(2):310–319PubMedCrossRefGoogle Scholar
  132. 132.
    Roder CH et al (2007) Pain response in depersonalization: a functional imaging study using hypnosis in healthy subjects. Psychother Psychosom 76(2):115–121PubMedCrossRefGoogle Scholar
  133. 133.
    Schulz-Stübner S et al (2004) Clinical hypnosis modulates functional magnetic resonance imaging signal intensities and pain perception in a thermal stimulation paradigm. Reg Anesth Pain Med 29(6):549–556PubMedCrossRefGoogle Scholar
  134. 134.
    Nakata H, Sakamoto K, Kakigi R (2014) Meditation reduces pain-related neural activity in the anterior cingulate cortex, insula, secondary somatosensory cortex, and thalamus. Front Psychol 5:1489PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Tracey I (2010) Getting the pain you expect: mechanisms of placebo, nocebo and reappraisal effects in humans. Nat Med 16(11):1277–1283PubMedCrossRefGoogle Scholar
  136. 136.
    Maihöfner C et al (2007) Brain imaging of analgesic and antihyperalgesic effects of cyclooxygenase inhibition in an experimental human pain model: a functional MRI study. Eur J Neurosci 26(5):1344–1356PubMedCrossRefGoogle Scholar
  137. 137.
    Wise RG et al (2007) The anxiolytic effects of midazolam during anticipation to pain revealed using fMRI. Magn Reson Imaging 25(6):801–810PubMedCrossRefGoogle Scholar
  138. 138.
    Sanders D et al (2015) Pharmacologic modulation of hand pain in osteoarthritis: a double-blind placebo-controlled functional magnetic resonance imaging study using naproxen. Arthritis Rheumatol 67(3):741–751PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Li K et al (2015) The effects of acupuncture treatment on the right frontoparietal network in migraine without aura patients. J Headache Pain 16:518PubMedCrossRefGoogle Scholar
  140. 140.
    Thompson E (2001) Empathy and consciousness. J Conscious Stud 8(5–7):1–32Google Scholar
  141. 141.
    Jackson PL et al (2006) Empathy examined through the neural mechanisms involved in imagining how I feel versus how you feel pain. Neuropsychologia 44(5):752–761PubMedCrossRefGoogle Scholar
  142. 142.
    Jackson PL, Meltzoff AN, Decety J (2005) How do we perceive the pain of others? A window into the neural processes involved in empathy. Neuroimage 24(3):771–779PubMedCrossRefGoogle Scholar
  143. 143.
    Lamm C et al (2007) What are you feeling? Using functional magnetic resonance imaging to assess the modulation of sensory and affective responses during empathy for pain. PLoS One 2(12):e1292PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Moriguchi Y et al (2006) Empathy and judging other’s pain: an fMRI study of alexithymia. Cereb Cortex 17(9):2223–2234PubMedCrossRefGoogle Scholar
  145. 145.
    Morrison I et al (2013) “Feeling” others’ painful actions: the sensorimotor integration of pain and action information. Hum Brain Mapp 34(8):1982–1998PubMedCrossRefGoogle Scholar
  146. 146.
    Morrison I, Peelen MV, Downing PE (2007) The sight of others’ pain modulates motor processing in human cingulate cortex. Cereb Cortex 17(9):2214–2222PubMedCrossRefGoogle Scholar
  147. 147.
    Simon D et al (2006) Brain responses to dynamic facial expressions of pain. Pain 126(1):309–318PubMedCrossRefGoogle Scholar
  148. 148.
    Botvinick M et al (2005) Viewing facial expressions of pain engages cortical areas involved in the direct experience of pain. Neuroimage 25(1):312–319PubMedCrossRefGoogle Scholar
  149. 149.
    Saarela MV et al (2007) The compassionate brain: humans detect intensity of pain from another’s face. Cereb Cortex 17(1):230–237PubMedCrossRefGoogle Scholar
  150. 150.
    Singer T et al (2004) Empathy for pain involves the affective but not sensory components of pain. Science 303(5661):1157–1162PubMedCrossRefGoogle Scholar
  151. 151.
    Lamm C, Decety J, Singer T (2011) Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain. Neuroimage 54(3):2492–2502PubMedCrossRefGoogle Scholar
  152. 152.
    Apkarian AV et al (2004) Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci 24(46):10410–10415PubMedCrossRefGoogle Scholar
  153. 153.
    Schmidt-Wilcke T et al (2006) Affective components and intensity of pain correlate with structural differences in gray matter in chronic back pain patients. Pain 125(1):89–97PubMedCrossRefGoogle Scholar
  154. 154.
    Jensen KB et al (2013) Overlapping structural and functional brain changes in patients with long-term exposure to fibromyalgia pain. Arthritis Rheum 65(12):3293–3303PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Vernon DJ (2005) Can neurofeedback training enhance performance? An evaluation of the evidence with implications for future research. Appl Psychophysiol Biofeedback 30(4):347–364PubMedCrossRefGoogle Scholar
  156. 156.
    Tao JX et al (2005) Intracranial EEG substrates of scalp EEG interictal spikes. Epilepsia 46(5):669–676PubMedCrossRefGoogle Scholar
  157. 157.
    Lantz G et al (2001) Localization of distributed sources and comparison with functional MRI. Epileptic Disord, Special Issue:45–58.Google Scholar
  158. 158.
    Stern JM (2006) Simultaneous electroencephalography and functional magnetic resonance imaging applied to epilepsy. Epilepsy Behav 8(4):683–692PubMedCrossRefGoogle Scholar
  159. 159.
    Cox RW, Jesmanowicz A, Hyde JS (1995) Real-time functional magnetic resonance imaging. Magn Reson Med 33(2):230–236PubMedCrossRefGoogle Scholar
  160. 160.
    Yoo S-S, Jolesz FA (2002) Functional MRI for neurofeedback: feasibility study on a hand motor task. Neuroreport 13(11):1377–1381PubMedCrossRefGoogle Scholar
  161. 161.
    Weiskopf N et al (2003) Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): methodology and exemplary data. Neuroimage 19(3):577–586PubMedCrossRefGoogle Scholar
  162. 162.
    Posse S et al (2003) Real-time fMRI of temporolimbic regions detects amygdala activation during single-trial self-induced sadness. Neuroimage 18(3):760–768PubMedCrossRefGoogle Scholar
  163. 163.
    Weiskopf N (2012) Real-time fMRI and its application to neurofeedback. Neuroimage 62(2):682–692PubMedCrossRefGoogle Scholar
  164. 164.
    Guan M et al (2015) Self-regulation of brain activity in patients with postherpetic neuralgia: a double-blind randomized study using real-time FMRI neurofeedback. PLoS One 10(4):e0123675PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Ramsey NF et al (1996) Functional mapping of human sensorimotor cortex with 3D BOLD fMRI correlates highly with H215O PET rCBF. J Cereb Blood Flow Metab 16(5):755–759PubMedCrossRefGoogle Scholar
  166. 166.
    Detre JA et al (1992) Perfusion imaging. Magn Reson Med 23(1):37–45PubMedCrossRefGoogle Scholar
  167. 167.
    Owen DG et al (2008) Quantification of pain-induced changes in cerebral blood flow by perfusion MRI. Pain 136(1):85–96PubMedCrossRefGoogle Scholar
  168. 168.
    Maleki N et al (2013) Pain response measured with arterial spin labeling. NMR Biomed 26(6):664–673PubMedPubMedCentralGoogle Scholar
  169. 169.
    Wang J et al (2004) Reduced susceptibility effects in perfusion fMRI with single-shot spin-echo EPI acquisitions at 1.5 tesla. Magn Reson Imaging 22(1):1–7PubMedCrossRefGoogle Scholar
  170. 170.
    Devlin JT et al (2000) Susceptibility-induced loss of signal: comparing PET and fMRI on a semantic task. Neuroimage 11(6):589–600PubMedCrossRefGoogle Scholar
  171. 171.
    Ojemann JG et al (1997) Anatomic localization and quantitative analysis of gradient refocused echo-planar fMRI susceptibility artifacts. Neuroimage 6(3):156–167PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Emma G. Duerden
    • 1
  • Roberta Messina
    • 2
    • 3
  • Maria A. Rocca
    • 2
    • 3
  • Massimo Filippi
    • 2
    • 3
  • Gary H. Duncan
    • 1
    Email author
  1. 1.Groupe de recherche sur le système nerveux centralUniversité de MontréalMontréalCanada
  2. 2.Neuroimaging Research Unit, Institute of Experimental Neurology, Division of NeuroscienceSan Raffaele Scientific Institute and Vita-Salute San Raffaele UniversityMilanItaly
  3. 3.Department of Neurology, Division of NeuroscienceSan Raffaele Scientific Institute and Vita-Salute SanRaffaele UniversityMilanItaly

Personalised recommendations