Advertisement

fMRI of Emotion

  • Simon Robinson
  • Ewald Moser
  • Martin PeperEmail author
Protocol
Part of the Neuromethods book series (NM, volume 119)

Abstract

Recent brain imaging work has expanded our understanding of the mechanisms of perceptual, cognitive, and motor functions in human subjects, but research into the cerebral control of emotional and motivational function is at a much earlier stage. Important concepts and theories of emotion are briefly introduced, as are research designs and multimodal approaches to answering the central questions in the field. We provide a detailed inspection of the methodological and technical challenges in assessing the cerebral correlates of emotional activation, perception, learning, memory, and emotional regulation behavior in healthy humans. fMRI is particularly challenging in structures such as the amygdala as it is affected by susceptibility-related signal loss, image distortion, physiological and motion artifacts, and colocalized Resting State Networks (RSNs). We review how these problems can be mitigated by using optimized echo-planar imaging (EPI) parameters, alternative MR sequences, and correction schemes. High-quality data can be acquired rapidly in these problematic regions with gradient-compensated multiecho EPI or high-resolution EPI with parallel imaging and optimum gradient directions, combined with distortion correction. Although neuroimaging studies of emotion encounter many difficulties regarding the limitations of measurement precision, research design, and strategies of validating neuropsychological emotion constructs, considerable improvement in data quality and sensitivity to subtle effects can be achieved. The methods outlined offer the prospect for fMRI studies of emotion to provide more sensitive, reliable, and representative models of measurement that systematically relate the dynamics of emotional regulation behavior with topographically distinct patterns of activity in the brain. This will provide additional information as an aid to assessment, categorization, and treatment of patients with emotional and personality disorders.

Key words

Emotion fMRI Research design Reliability Validity Amygdala Signal loss Distortion Resting state networks 

Notes

Acknowledgments

The author’s own work reported in this chapter was supported by the Austria FWF grant P16669-B02, grant 11437 from the Austrian National Bank, the government of the Provincia Autonoma di Trento, Italy, the private foundation Fondazione Cassa di Risparmio di Trento e Rovereto, the University of Trento, Italy, and by grant Pe 499/3–2 from the Deutsche Forschungsgemeinschaft to M.P. J. Jovicich is thanked for helpful comments.

References

  1. 1.
    Büchel C, Dolan RJ (2000) Classical fear conditioning in functional neuroimaging. Curr Opin Neurobiol 10:219–223PubMedCrossRefGoogle Scholar
  2. 2.
    Phan KL, Wager T, Taylor SF, Liberzon I (2002) Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. NeuroImage 16:331–348PubMedCrossRefGoogle Scholar
  3. 3.
    Dolan RJ, Vuilleumier P (2003) Amygdala automaticity in emotional processing. Ann N Y Acad Sci 985:348–355PubMedCrossRefGoogle Scholar
  4. 4.
    Wager TD, Phan KL, Liberzon I, Taylor SF (2003) Valence, gender, and lateralization of functional brain anatomy in emotion: a meta-analysis of findings from neuroimaging. NeuroImage 19:513–531PubMedCrossRefGoogle Scholar
  5. 5.
    Zald DH (2003) The human amygdala and the emotional evaluation of sensory stimuli. Brain Res Brain Res Rev 41:88–123PubMedCrossRefGoogle Scholar
  6. 6.
    Ochsner KN, Gross JJ (2005) The cognitive control of emotion. Trends Cogn Sci 9:242–249PubMedCrossRefGoogle Scholar
  7. 7.
    Panksepp J (1998) Affective neuroscience: the foundations of human and animal emotions. Oxford University Press, OxfordGoogle Scholar
  8. 8.
    Davidson RJ, Jackson DC, Kalin NH (2000) Emotion, plasticity, context, and regulation: perspectives from affective neuroscience. Psychol Bull 126:890–909PubMedCrossRefGoogle Scholar
  9. 9.
    Dolan RJ (2002) Emotion, cognition, and behavior. Science 298:1191–1194PubMedCrossRefGoogle Scholar
  10. 10.
    Breiter HC, Rauch SL (1996) Functional MRI and the study of OCD: from symptom provocation to cognitive-behavioral probes of cortico-striatal systems and the amygdala. NeuroImage 4:127–138CrossRefGoogle Scholar
  11. 11.
    Johnson PA, Hurley RA, Benkelfat C, Herpertz SC, Taber KH (2003) Understanding emotion regulation in borderline personality disorder: contributions of neuroimaging. J Neuropsychiatry Clin Neurosci 15:397–402PubMedCrossRefGoogle Scholar
  12. 12.
    Hamann S, Canli T (2004) Individual differences in emotion processing. Curr Opin Neurobiol 14:233–238PubMedCrossRefGoogle Scholar
  13. 13.
    Paquette V, Levesque J, Mensour B et al (2003) Change the mind and you change the brain: effects of cognitive-behavioral therapy on the neural correlates of spider phobia. Neuroimage 18:401–409PubMedCrossRefGoogle Scholar
  14. 14.
    Popma A, Raine A (2006) Will future forensic assessment be neurobiologic? Child Adolesc Psychiatr Clin N Am 15:429–444PubMedCrossRefGoogle Scholar
  15. 15.
    Bräutigam S (2005) Neuroeconomics – from neural systems to economic behaviour. Brain Res Bull 67:355–360CrossRefGoogle Scholar
  16. 16.
    Walter H, Abler B, Ciaramidaro A, Erk S (2005) Motivating forces of human actions: neuroimaging reward and social interaction. Brain Res Bull 67:368–381PubMedCrossRefGoogle Scholar
  17. 17.
    Adolphs R, Tranel D, Damasio H, Damasio A (1994) Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature 372:669–672PubMedCrossRefGoogle Scholar
  18. 18.
    Broks P, Young AW, Maratos EJ et al (1998) Face processing impairments after encephalitis: amygdala damage and recognition of fear. Neuropsychologia 36:59–70PubMedCrossRefGoogle Scholar
  19. 19.
    Sprengelmeyer R, Young AW, Schröder U et al (1999) Knowing no fear. Proc R Soc Lond B Biol Sci 266:2451–2456CrossRefGoogle Scholar
  20. 20.
    Adolphs R, Gosselin F, Buchanan T, Tranel D, Schyns P, Damasio A (2005) A mechanism for impaired fear recognition after amygdala damage. Nature 433:68–72PubMedCrossRefGoogle Scholar
  21. 21.
    Adolphs R, Tranel D, Hamann S et al (1999) Recognition of facial emotion in nine individuals with bilateral amygdala damage. Neuropsychologia 37:1111–1117PubMedCrossRefGoogle Scholar
  22. 22.
    Schmolck H, Squire LR (2001) Impaired perception of facial emotions following bilateral damage to the anterior temporal lobe. Neuropsychology 15:30–38PubMedCrossRefGoogle Scholar
  23. 23.
    LeDoux JE (1995) Emotion: clues from the brain. Annu Rev Psychol 46:209–235PubMedCrossRefGoogle Scholar
  24. 24.
    LaBar KS, Gatenby JC, Gore JC, LeDoux JE, Phelps EA (1998) Human amygdala activation during conditioned fear acquisition and extinction: a mixed-trial fMRI study. Neuron 20:937–945PubMedCrossRefGoogle Scholar
  25. 25.
    Morris JS, Büchel C, Dolan RJ (2002) Parallel neural responses in amygdala subregions and sensory cortex during implicit fear. Neurobiol 12:169–177Google Scholar
  26. 26.
    Büchel C, Morris J, Dolan RJ, Friston KJ (1998) Brain systems mediating aversive conditioning: an event-related fMRI study. Neuron 20:947–957PubMedCrossRefGoogle Scholar
  27. 27.
    Krech D (1950) Dynamic systems as open neurological systems. Psychol Rev 57:345–361PubMedCrossRefGoogle Scholar
  28. 28.
    Cacioppo JT, Tassinary LG, Berntson GG (eds) (2000) Handbook of psychophysiology. Cambridge University Press, CambridgeGoogle Scholar
  29. 29.
    Scherer KR, Peper M (2001) Psychological theories of emotion and neuropsychological research. In: Gainotti G (ed) Handbook of neuropsychology. Vol. 5: Emotional behavior and its disorders, 2nd edn. Elsevier, Amsterdam, pp 17–48Google Scholar
  30. 30.
    Coan JA, Allen JJB (eds) (2007) Handbook of emotion elicitation and assessment. Oxford University Press, New York, NYGoogle Scholar
  31. 31.
    Peper M, Vauth R (2008) Socio-emotional processing competences: assessment and clinical application. In: Vandekerckhove M, von Scheve C, Ismer S, Jung S, Kronast S (eds) Regulating emotions (ch. 9). Wiley, Hoboken, NJGoogle Scholar
  32. 32.
    Kerlinger FN, Lee HB (2000) Foundations of behavioral research (4th edition). Harcourt College Publishers, Fort Worth, TXGoogle Scholar
  33. 33.
    Scherer KR (1993) Neuroscience projections to current debates in emotion psychology. Cogn Emot 7:1–41CrossRefGoogle Scholar
  34. 34.
    Scherer KR (2000) Psychological models of emotion. In: Borod J (ed) The neuropsychology of emotion. Oxford University Press, Oxford, pp 137–162Google Scholar
  35. 35.
    Scherer KR (1999) Appraisal theories. In: Dalgleish T, Power M (eds) Handbook of cognition and emotion. Wiley, Chichester, pp 637–663Google Scholar
  36. 36.
    Peper M, Fahrenberg J (2008) Psychophysiologie. In: Sturm W, Herrmann M, Münte TF (eds) Lehrbuch der Klinischen Neuropsychologie. Spektrum Akademischer Verlag, HeidelbergGoogle Scholar
  37. 37.
    Stemmler G, Fahrenberg J (1989) Psychophysiological assessment: conceptual, psychometric, and statistical issues. In: Turpin G (ed) Handbook of clinical psychophysiology. Wiley, Chichester, pp 71–104Google Scholar
  38. 38.
    Stemmler G (1992) Differential psychophysiology: persons in situations. Springer, HeidelbergCrossRefGoogle Scholar
  39. 39.
    Johnsen BH, Thayer JF, Hugdahl K (1995) Affective judgment of the Ekman faces: a dimensional approach. J Psychophysiol 9:193–202Google Scholar
  40. 40.
    Peper M, Irle E (1997) The decoding of emotional concepts in patients with focal cerebral lesions. Brain Cogn 34:360–387PubMedCrossRefGoogle Scholar
  41. 41.
    Ekman P (1994) Strong evidence for universals in facial expressions. Psychol Bull 115:268–287PubMedCrossRefGoogle Scholar
  42. 42.
    Russell JA (1994) Is there universal recognition of emotion from facial expressions? Psychol Bull 115:102–141PubMedCrossRefGoogle Scholar
  43. 43.
    Stemmler G (1998) Emotionen. In: F Rösler (Ed) Enzyklopädie der Psychologie: Themenbereich C Theorie und Forschung, Serie 1 Biologische Psychologie, Band 5 Ergebnisse und Anwendungen der Psychophysiologie. Göttingen: Hogrefe, pp 95–163Google Scholar
  44. 44.
    Scherer KR (1984) On the nature and function of emotion: a component process approach. In: Scherer KR, Ekman P (eds) Approaches to emotion. Erlbaum, Hillsdale, NJ, pp 203–317Google Scholar
  45. 45.
    Lacey JI (1967) Somatic response patterning and stress: some revisions of activation theory. In: Appley MH, Trumbull R (eds) Psychological stress: issues in research. Appleton-Century Crofts, New York, NY, pp 14–42Google Scholar
  46. 46.
    Peper M (2000) Awareness of emotions: a neuropsychological perspective. Adv Consciousness Stud 16:245–270Google Scholar
  47. 47.
    Lang P, Rice DG, Sternbach RA (1972) The psychophysiology of emotion. In: Greenfield NS, Sternbach RA (eds) Handbook of psychophysiology. Holt, New York, NY, pp 623–643Google Scholar
  48. 48.
    Fahrenberg J (1983) Psychophysiologische Methodik. In: Groffman K-J, Michel L (eds) Enzyklopädie der Psychologie: Themenbereich B Methodologie und Methoden, Serie II Psychologische Diagnostik, Band 4 Verhaltensdiagnostik. Hogrefe, Göttingen, pp 1–192Google Scholar
  49. 49.
    Lazarus RS (1991) Emotion and adaptation. Oxford University Press, New York, NYGoogle Scholar
  50. 50.
    Parkinson B, Totterdell P (1999) Classifying affect-regulation strategies. Cogn Emot 13:277–303CrossRefGoogle Scholar
  51. 51.
    Gross JJ, Levenson RW (1991) Emotional suppression: physiology, self-report, and expressive behavior. J Pers Soc Psychol 64:970–986CrossRefGoogle Scholar
  52. 52.
    Lazarus RS, Folkman S (1984) Stress, appraisal, and coping. Springer, New York, NYGoogle Scholar
  53. 53.
    Gross JJ (1998) The emerging field of emotion regulation: an integrative review. Rev Gen Psychol 2:271–299Google Scholar
  54. 54.
    Whalen PJ, Rauch SL, Etcoff NL, McInerney SC, Lee MB, Jenike MA (1998) Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. J Neurosci 18:411–418PubMedGoogle Scholar
  55. 55.
    Pessoa L, Japee S, Sturman D, Ungerleider LG (2006) Target visibility and visual awareness modulate amygdala responses to fearful faces. Cereb Cortex 16:366–375PubMedCrossRefGoogle Scholar
  56. 56.
    McIntosh AR, Gonzalez-Lima F (1994) Network interactions among limbic cortices, basal forebrain, and cerebellum differentiate a tone conditioned as a Pavlovian excitor or inhibitor: fluorodeoxyglucose mapping and covariance structural modeling. J Neurophysiol 72:1717–1733PubMedGoogle Scholar
  57. 57.
    Büchel C, Friston KJ (1997) Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling. Magn Reson Imaging 15:763–770CrossRefGoogle Scholar
  58. 58.
    Büchel C, Friston KJ (2000) Assessing interactions among neuronal systems using functional neuroimaging. Neural Netw 13:871–882PubMedCrossRefGoogle Scholar
  59. 59.
    Friston KJ, Harrison L, Penny W (2003) Dynamic causal modelling. NeuroImage 19:1273–1302PubMedCrossRefGoogle Scholar
  60. 60.
    Vuilleumier P, Richardson MP, Armony JL, Driver J, Dolan RJ (2004) Distant influences of amygdala lesion on visual cortical activation during emotional face processing. Nat Neurosci 7:1271–1278PubMedCrossRefGoogle Scholar
  61. 61.
    Friston KJ (1994) Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp 2:56–78CrossRefGoogle Scholar
  62. 62.
    Ochsner KN, Ray RD, Cooper JC et al (2004) For better or for worse: neural systems supporting the cognitive down- and up-regulation of negative emotion. Neuroimage 23:483–499PubMedCrossRefGoogle Scholar
  63. 63.
    Fahrenberg J, Peper M (2000) Psychophysiologie. In: Sturm W, Herrmann M, Wallesch CW (eds) Lehrbuch der neuropsychologie, chapter 1. 10. Swets and Zeitlinger, Amsterdam, pp 154–68Google Scholar
  64. 64.
    Passingham RE, Stephan KE, Kötter R (2002) The anatomical basis of functional localization in the cortex. Nat Rev Neurosci 3:606–616PubMedCrossRefGoogle Scholar
  65. 65.
    Büchel C, Dolan RJ, Armony JL, Friston KJ (1999) Amygdala-hippocampal involvement in human aversive trace conditioning revealed through event-related functional magnetic resonance imaging. J Neurosci 19:10869–10876PubMedGoogle Scholar
  66. 66.
    Foerster F (1995) On the problems of initial-value-dependencies and measurement of change. J Psychophysiol 9:324–341Google Scholar
  67. 67.
    Peper M, Herpers M, Spreer J, Hennig J, Zentner J (2006) Functional neuroimaging studies of emotional learning and autonomic reactions. J Physiol Paris 99:342–354PubMedCrossRefGoogle Scholar
  68. 68.
    Cardinal RN, Parkinson JA, Hall J, Everitt BJ (2002) Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev 26:321–352PubMedCrossRefGoogle Scholar
  69. 69.
    O’Doherty J, Dayan P, Schultz J, Deichmann R, Friston K, Dolan RJ (2004) Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science 304:452–454PubMedCrossRefGoogle Scholar
  70. 70.
    Grandjean D, Sander D, Pourtois G et al (2005) The voices of wrath: brain responses to angry prosody in meaningless speech. Nat Neurosci 8:145–146PubMedCrossRefGoogle Scholar
  71. 71.
    Critchley H, Daly E, Phillips M et al (2000) Explicit and implicit neural mechanisms for processing of social information from facial expressions: a functional Magnetic Resonance Imaging study. Hum Brain Mapp 9:93–105PubMedCrossRefGoogle Scholar
  72. 72.
    Hariri S, Bookheiner SY, Mazziotta JC (2000) Modulating emotional responses: effects of a neocortical network on the limbic system. Neuroreport 11:43–48PubMedCrossRefGoogle Scholar
  73. 73.
    Furmark T, Fischer H, Wik G, Larsson M, Fredrikson M (1997) The amygdala and individual differences in human fear conditioning. Neuroreport 8:3957–3960PubMedCrossRefGoogle Scholar
  74. 74.
    Canli T, Zhao Z, Desmond JE, Kang E, Gross J, Gabrieli JDE (2001) An fMRI study of personality influences on brain reactivity to emotional stimuli. Behav Neurosci 115:33–42PubMedCrossRefGoogle Scholar
  75. 75.
    Canli T, Sivers H, Whitfield SL, Gotlib IH, Gabrieli JDE (2002) Amygdala response to happy faces as a function of extraversion. Science 296:2191PubMedCrossRefGoogle Scholar
  76. 76.
    Schienle A, Schafer A, Stark R, Walter B, Vaitl D (2005) Relationship between disgust sensitivity, trait anxiety and brain activity during disgust induction. Neuropsychobiology 51:86–92PubMedCrossRefGoogle Scholar
  77. 77.
    Canli T, Amin Z (2002) Neuroimaging of emotion and personality: scientific evidence and ethical considerations. Brain Cogn 50:414–431PubMedCrossRefGoogle Scholar
  78. 78.
    Small SL, Nusbaum HC (2004) On the neurobiological investigation of language understanding in context. Brain Lang 89:300–311PubMedCrossRefGoogle Scholar
  79. 79.
    Fahrenberg J, Myrtek M (eds) (2001) Progress in ambulatory assessment. Hogrefe and Huber, Seattle, WAGoogle Scholar
  80. 80.
    Adolphs R (2002) Neural systems for recognizing emotion. Curr Opin Neurobiol 12:169–177PubMedCrossRefGoogle Scholar
  81. 81.
    Deichmann R, Josephs O, Hutton C, Corfield DR, Turner R (2002) Compensation of susceptibility-induced BOLD sensitivity losses in echo-planar fMRI imaging. NeuroImage 15:120–135PubMedCrossRefGoogle Scholar
  82. 82.
    Yablonskiy DA (1998) Quantitation of intrinsic magnetic susceptibility-related effects in a tissue matrix. Phantom study. Magn Reson Med 39:417–428PubMedCrossRefGoogle Scholar
  83. 83.
    Lipschutz B, Friston KJ, Ashburner J, Turner R, Price CJ (2001) Assessing study-specific regional variations in fMRI signal. Neuroimage 13:392–398PubMedCrossRefGoogle Scholar
  84. 84.
    Toga AW, Thompson PM (2001) Maps of the brain. Anat Rec 265:37–53PubMedCrossRefGoogle Scholar
  85. 85.
    Hutton C, Bork A, Josephs O, Deichmann R, Ashburner J, Turner R (2002) Image distortion correction in fMRI: a quantitative evaluation. NeuroImage 16:217–240PubMedCrossRefGoogle Scholar
  86. 86.
    Raj D, Paley DP, Anderson AW, Kennan RP, Gore JC (2000) A model for susceptibility artefacts from respiration in functional echo-planar magnetic resonance imaging. Phys Med Biol 45:3809–3820PubMedCrossRefGoogle Scholar
  87. 87.
    Windischberger C, Langenberger H, Sycha T et al (2002) On the origin of respiratory artifacts in BOLD-EPI of the human brain. Magn Reson Imaging 20:575–582PubMedCrossRefGoogle Scholar
  88. 88.
    Wise RG, Ide K, Poulin MJ, Tracey I (2004) Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal. Neuroimage 21:1652–1664PubMedCrossRefGoogle Scholar
  89. 89.
    Dagli MS, Ingeholm JE, Haxby JV (1999) Localization of cardiac-induced signal change in fMRI. Neuroimage 9:407–415PubMedCrossRefGoogle Scholar
  90. 90.
    Critchley HD, Rotshtein P, Nagai Y, O’Doherty J, Mathias CJ, Dolan RJ (2005) Activity in the human brain predicting differential heart rate responses to emotional facial expressions. Neuroimage 24:751–762PubMedCrossRefGoogle Scholar
  91. 91.
    Frysinger RC, Harper RM (1989) Cardiac and respiratory correlations with unit discharge in human amygdala and hippocampus. Electroencephalogr Clin Neurophysiol 72:463–470PubMedCrossRefGoogle Scholar
  92. 92.
    Shmueli K, van Gelderen P, de Zwart JA et al (2007) Low-frequency fluctuations in the cardiac rate as a source of variance in the resting-state fMRI BOLD signal. Neuroimage 38:306–320PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Cohen MA, Taylor JA (2002) Short-term cardiovascular oscillations in man: measuring and modelling the physiologies. J Physiol 542:669–683PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Birn RM, Diamond JB, Smith MA, Bandettini PA (2006) Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. Neuroimage 31:1536–1548PubMedCrossRefGoogle Scholar
  95. 95.
    Edward V, Windischberger C, Cunnington R et al (2000) Quantification of fMRI artifact reduction by a novel plaster cast head holder. Hum Brain Mapp 11:207–213PubMedCrossRefGoogle Scholar
  96. 96.
    Hajnal J, Myers R, Oatridge A, Schwieso J, Young I, Bydder G (1994) Artifacts due to stimulus correlated motion in functional imaging of the brain. Magn Reson Med 31:283–291PubMedCrossRefGoogle Scholar
  97. 97.
    Field A, Yen Y, Burdette J, Elster A (2000) False cerebral activation on BOLD functional MR images: study of low-amplitude motion weakly correlated to stimulus. AJNR Am J Neuroradiol 21:1388–1396PubMedGoogle Scholar
  98. 98.
    Robinson S, Moser E (2004) Positive results in amygdala fMRI: Emotion or head motion? NeuroImage 22:S47, WE 294Google Scholar
  99. 99.
    Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541PubMedCrossRefGoogle Scholar
  100. 100.
    Lowe MJ, Mock BJ, Sorenson JA (1998) Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage 7:119–132PubMedCrossRefGoogle Scholar
  101. 101.
    Fox MD, Snyder AZ, Zacks JM, Raichle ME (2006) Coherent spontaneous activity accounts for trial-to-trial variability in human evoked brain responses. Nat Neurosci 9:23–25PubMedCrossRefGoogle Scholar
  102. 102.
    Fox MD, Snyder AZ, Vincent JL, Raichle ME (2007) Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior. Neuron 56:171–184PubMedCrossRefGoogle Scholar
  103. 103.
    Beckmann CF, De Luca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360:1001–1013PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Damoiseaux JS, Rombouts SA, Barkhof F et al (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A 103:13848–13853PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    De Luca M, Beckmann CF, De Stefano N, Matthews PM, Smith SM (2006) fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage 29:1359–1367PubMedCrossRefGoogle Scholar
  106. 106.
    Robinson S, Soldati N, Basso G et al (2008) A resting state network in the basal ganglia. Proc Intl Soc Magn Res Med 16:746Google Scholar
  107. 107.
    Beckmann CF, Smith SM (2005) Tensorial extensions of independent component analysis for multisubject FMRI analysis. Neuroimage 25:294–311PubMedCrossRefGoogle Scholar
  108. 108.
    Raichle M, MacLeod A, Snyder A, Powers W, Gusnard D, Shulman G (2001) A default mode of brain function. Proc Natl Acad Sci U S A 98:676–682PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Shulman G, Fiez J, Corbetta M et al (1997) Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. J Cogn Neurosci 9:648–663PubMedCrossRefGoogle Scholar
  110. 110.
    Merboldt KD, Fransson P, Bruhn H, Frahm J (2001) Functional MRI of the human amygdala? Neuroimage 14:253–257PubMedCrossRefGoogle Scholar
  111. 111.
    Triantafyllou C, Hoge RD, Krueger G et al (2005) Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters. Neuroimage 26:243–250PubMedCrossRefGoogle Scholar
  112. 112.
    Krasnow B, Tamm L, Greicius MD et al (2003) Comparison of fMRI activation at 3 and 1.5 T during perceptual, cognitive, and affective processing. Neuroimage 18:813–826PubMedCrossRefGoogle Scholar
  113. 113.
    Dickerson BC, Wright CI, Miller S et al (2006) Ultrahigh-field differentiation of medial temporal lobe function: sub-millimeter fMRI of amygdala and hippocampal activation at 7 Tesla. NeuroImage 31:S154CrossRefGoogle Scholar
  114. 114.
    Merboldt KD, Finsterbusch J, Frahm J (2000) Reducing inhomogeneity artifacts in functional MRI of human brain activation-thin sections vs gradient compensation. J Magn Reson 145:184–191PubMedCrossRefGoogle Scholar
  115. 115.
    Bellgowan PS, Bandettini PA, van Gelderen P, Martin A, Bodurka J (2006) Improved BOLD detection in the medial temporal region using parallel imaging and voxel volume reduction. Neuroimage 29:1244–1251PubMedCrossRefGoogle Scholar
  116. 116.
    Triantafyllou C, Hoge RD, Wald LL (2006) Effect of spatial smoothing on physiological noise in high-resolution fMRI. Neuroimage 32:551–557PubMedCrossRefGoogle Scholar
  117. 117.
    Robinson S, Windischberger C, Rauscher A, Moser E (2004) Optimized 3 T EPI of the amygdalae. NeuroImage 22:203–210PubMedCrossRefGoogle Scholar
  118. 118.
    Frahm J, Merboldt KD, Hänicke W (1988) Direct FLASH MR imaging of magnetic field inhomogeneities by gradient compensation. Magn Reson Med 6:474–480PubMedCrossRefGoogle Scholar
  119. 119.
    Deichmann R, Gottfried JA, Hutton C, Turner R (2003) Optimized EPI for fMRI studies of the orbitofrontal cortex. Neuroimage 19:430–441PubMedCrossRefGoogle Scholar
  120. 120.
    Cho Z, Ro Y (1992) Reduction of susceptibility artifact in gradient-echo imaging. Magn Reson Med 23:193–200PubMedCrossRefGoogle Scholar
  121. 121.
    Stenger VA, Boada FE, Noll DC (2000) Three-dimensional tailored RF pulses for the reduction of susceptibility artifacts in T(*)(2)-weighted functional MRI. Magn Reson Med 44:525–531PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Yip CY, Fessler JA, Noll DC (2006) Advanced three-dimensional tailored RF pulse for signal recovery in T2*-weighted functional magnetic resonance imaging. Magn Reson Med 56:1050–1059PubMedCrossRefGoogle Scholar
  123. 123.
    De Panfilis C, Schwarzbauer C (2005) Positive or negative blips? The effect of phase encoding scheme on susceptibility-induced signal losses in EPI. Neuroimage 25:112–121PubMedCrossRefGoogle Scholar
  124. 124.
    Ojemann JG, Akbudak E, Snyder AZ, McKinstry RC, Raichle ME, Conturo TE (1997) Anatomic localization and quantitative analysis of gradient refocused echo-planar fMRI susceptibility artifacts. Neuroimage 6:156–167PubMedCrossRefGoogle Scholar
  125. 125.
    Chen N, Dickey CC, Guttman CRG, Panych LP (2003) Selection of voxel size and slice orientation for fMRI in the presence of susceptibility field gradients: application to imaging of the amygdala. NeuroImage 19:817–825PubMedCrossRefGoogle Scholar
  126. 126.
    Weiskopf N, Hutton C, Josephs O, Deichmann R (2006) Optimal EPI parameters for reduction of susceptibility-induced BOLD sensitivity losses: a whole-brain analysis at 3 T and 1.5 T. Neuroimage 33:493–504PubMedCrossRefGoogle Scholar
  127. 127.
    Young IR, Cox IJ, Bryant DJ, Bydder GM (1988) The benefits of increasing spatial resolution as a means of reducing artifacts due to field inhomogeneities. Magn Reson Imaging 6:585–590PubMedCrossRefGoogle Scholar
  128. 128.
    Hyde S, Biswal B, Jesmanowicz A (2001) High-resolution fMRI using multislice partial k-space GR-EPI with cubic voxels. Magn Reson Med 46:114–125PubMedCrossRefGoogle Scholar
  129. 129.
    Haacke E, Brown R, Thompson M, Venkatesan R (1999) Magnetic resonance imaging: physical principles and sequence design. Wiley-Liss, New York, NYGoogle Scholar
  130. 130.
    Scouten A, Papademetris X, Constable RT (2006) Spatial resolution, signal-to-noise ratio, and smoothing in multi-subject functional MRI studies. Neuroimage 30:787–793PubMedCrossRefGoogle Scholar
  131. 131.
    Parrish T, Gitelman D, LaBar K, Mesulam M (2000) Impact of signal-to-noise on functional MRI. Magn Reson Med 44:925–932PubMedCrossRefGoogle Scholar
  132. 132.
    LaBar K, Gitelman D, Mesulam M, Parrish T (2001) Impact of signal-to-noise on functional MRI of the human amygdala. Neuroreport 12:3461–3464PubMedCrossRefGoogle Scholar
  133. 133.
    Robinson S, Hoheisel B, Windischberger C, Habel U, Lanzenberger R, Moser E (2005) FMRI of the emotions, towards an improved understanding of amygdala function. Curr Med Imaging Rev 1:115–129CrossRefGoogle Scholar
  134. 134.
    Morawetz C, Holz P, Lange C et al (2008) Improved functional mapping of the human amygdala using a standard functional magnetic resonance imaging sequence with simple modifications. Magn Reson Imaging 26:45–53PubMedCrossRefGoogle Scholar
  135. 135.
    Stocker T, Kellermann T, Schneider F et al (2006) Dependence of amygdala activation on echo time: results from olfactory fMRI experiments. Neuroimage 30:151–159PubMedCrossRefGoogle Scholar
  136. 136.
    Gorno-Tempini M, Hutton C, Josephs O, Deichmann R, Price C, Turner R (2002) Echo time dependence of BOLD contrast and susceptibility artifacts. NeuroImage 15:136–142PubMedCrossRefGoogle Scholar
  137. 137.
    Sodickson DK, Manning WJ (1997) Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 38:591–603PubMedCrossRefGoogle Scholar
  138. 138.
    Pruessmann K, Weiger M, Scheidegger M, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962PubMedCrossRefGoogle Scholar
  139. 139.
    Lutcke H, Merboldt KD, Frahm J (2006) The cost of parallel imaging in functional MRI of the human brain. Magn Reson Imaging 24:1–5PubMedCrossRefGoogle Scholar
  140. 140.
    Schmidt CF, Degonda N, Luechinger R, Henke K, Boesiger P (2005) Sensitivity-encoded (SENSE) echo planar fMRI at 3 T in the medial temporal lobe. NeuroImage 25:625–641PubMedCrossRefGoogle Scholar
  141. 141.
    Fürsatz M, Windischberger C, Karlsson KÆ, Moser E (2008) Successful fMRI of the hypothalamus at 3T. Proc Intl Soc Magn Reson Med 16:2501Google Scholar
  142. 142.
    Fürsatz M, Windischberger C, Karlsson KÆ, Mayr W, Moser E. Valence-dependent modulation of hypothalamic activity. Neuroimage (in press)Google Scholar
  143. 143.
    Dowell NG, Tofts PS (2007) Fast, accurate, and precise mapping of the RF field in vivo using the 180 degrees signal null. Magn Reson Med 58:622–630PubMedCrossRefGoogle Scholar
  144. 144.
    Speck O, Hennig J (1998) Functional imaging by I0- and T2*-parameter mapping using multi-image EPI. Magn Reson Med 40:243–248PubMedCrossRefGoogle Scholar
  145. 145.
    Posse S, Wiese S, Gembris D et al (1999) Enhancement of BOLD-contrast sensitivity by single-shot multi-echo functional MR imaging. Magn Reson Med 42:87–97PubMedCrossRefGoogle Scholar
  146. 146.
    Posse S, Shen Z, Kiselev V, Kemna LJ (2003) Single-shot T(2)* mapping with 3D compensation of local susceptibility gradients in multiple regions. Neuroimage 18:390–400PubMedCrossRefGoogle Scholar
  147. 147.
    Posse S, Holten D, Gao K, Rick J, Speck O (2006) Evaluation of interleaved XYZ-shimming with multi-echo EPI in prefrontal cortex and amygdala at 4 Tesla. NeuroImage 31:S154CrossRefGoogle Scholar
  148. 148.
    Weiskopf N, Klose U, Birbaumer N, Mathiak K (2005) Single-shot compensation of image distortions and BOLD contrast optimization using multi-echo EPI for real-time fMRI. Neuroimage 24:1068–1079PubMedCrossRefGoogle Scholar
  149. 149.
    Glover GH, Law CS (2001) Spiral-in/out BOLD fMRI for increased SNR and reduced susceptibility artifacts. Magn Reson Med 46:515–522PubMedCrossRefGoogle Scholar
  150. 150.
    Guo H, Song AW (2003) Single-shot spiral image acquisition with embedded z-shimming for susceptibility signal recovery. J Magn Reson Imaging 18:389–395PubMedCrossRefGoogle Scholar
  151. 151.
    Truong TK, Song AW (2008) Single-shot dual-z-shimmed sensitivity-encoded spiral-in/out imaging for functional MRI with reduced susceptibility artifacts. Magn Reson Med 59:221–227PubMedCrossRefGoogle Scholar
  152. 152.
    Li Z, Wu G, Zhao X, Luo F, Li SJ (2002) Multiecho segmented EPI with z-shimmed background gradient compensation (MESBAC) pulse sequence for fMRI. Magn Reson Med 48:312–321PubMedCrossRefGoogle Scholar
  153. 153.
    Weisskoff RM, Davis TL (1992) Correcting gross distortion on echo planar images. Paper presented at the SMRM, BerlinGoogle Scholar
  154. 154.
    Jezzard P, Balaban RS (1995) Correction for geometric distortion in echo planar images from B0 field variations. Magn Reson Med 34:65–73PubMedCrossRefGoogle Scholar
  155. 155.
    Jenkinson M (2003) Fast, automated, N-dimensional phase-unwrapping algorithm. Magn Reson Med 49:193–197PubMedCrossRefGoogle Scholar
  156. 156.
    Witoszynskyj S, Rauscher A, Reichenbach JR, Barth M (2007) ΠUN (Πhase UNwrapping) validation of a 2D region-growing phase unwrapping program. Proc Intl Soc Magn Reson Med 15:3436Google Scholar
  157. 157.
    Windischberger C, Robinson S, Rauscher A, Barth M, Moser E (2004) Robust field map generation using a triple-echo acquisition. J Magn Reson Imaging 20:730PubMedCrossRefGoogle Scholar
  158. 158.
    Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM (1990) The NMR phased array. Magn Reson Med 16:192–225PubMedCrossRefGoogle Scholar
  159. 159.
    Bernstein MA, Grgic M, Brosnan TJ, Pelc NJ (1994) Reconstructions of phase contrast, phased array multicoil data. Magn Reson Med 32:330–334PubMedCrossRefGoogle Scholar
  160. 160.
    Hammond KE, Lupo JM, Xu D et al (2008) Development of a robust method for generating 7.0 T multichannel phase images of the brain with application to normal volunteers and patients with neurological diseases. Neuroimage 39:1682–1692PubMedCrossRefGoogle Scholar
  161. 161.
    Robinson S, Jovicich J (2008) EPI distortion corrections at 4 T: Multi-channel field mapping and a comparison with the point-spread function method. Proc Intl Soc Magn Reson Med 16:3031Google Scholar
  162. 162.
    Robson MD, Gore JC, Constable RT (1997) Measurement of the point spread function in MRI using constant time imaging. Magn Reson Med 38:733–740PubMedCrossRefGoogle Scholar
  163. 163.
    Zeng H, Constable RT (2002) Image distortion correction in EPI: Comparison of field mapping with point spread function mapping. Magn Reson Med 48:137–146PubMedCrossRefGoogle Scholar
  164. 164.
    Zaitsev M, Hennig J, Speck O (2004) Point spread function mapping with parallel imaging techniques and high acceleration factors: fast, robust, and flexible method for echo-planar imaging distortion correction. Magn Reson Med 52:1156–1166PubMedCrossRefGoogle Scholar
  165. 165.
    Hu X, Kim SG (1994) Reduction of signal fluctuation in functional MRI using navigator echoes. Magn Reson Med 31:495–503PubMedCrossRefGoogle Scholar
  166. 166.
    Bruder H, Fischer H, Reinfelder HE, Schmitt F (1992) Image reconstruction for echo planar imaging with nonequidistant k-space sampling. Magn Reson Med 23:311–323PubMedCrossRefGoogle Scholar
  167. 167.
    Barry RL, Klassen LM, Williams JM, Menon RS (2008) Hybrid two-dimensional navigator correction: a new technique to suppress respiratory-induced physiological noise in multi-shot echo-planar functional MRI. Neuroimage 39:1142–1150PubMedCrossRefGoogle Scholar
  168. 168.
    Lund TE, Madsen KH, Sidaros K, Luo WL, Nichols TE (2006) Non-white noise in fMRI: does modelling have an impact? Neuroimage 29:54–66PubMedCrossRefGoogle Scholar
  169. 169.
    Glover GH, Li TQ, Ress D (2000) Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn Reson Med 44:162–167PubMedCrossRefGoogle Scholar
  170. 170.
    Windischberger C, Friedreich S, Hoheisel B, Moser E (2004) The importance of correcting for physiological artifacts for functional MRI in deep brain structures. NeuroImage 22:S28Google Scholar
  171. 171.
    Josephs O, Howseman A, Friston K, Turner R (1997) Physiological noise modelling for multi-slice EPI fMRI using SPM. Proc Intl Soc Magn Reson Med 5:1682Google Scholar
  172. 172.
    Weissenbacher A, Windischberger C, Lanzenberger R, Moser E (2008) Efficient correction for artificial signal fluctuations in resting-state fMRI-data. Proc Intl Soc Magn Reson Med 16:2467Google Scholar
  173. 173.
    Beckmann CF, Smith SM (2004) Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans Med Imaging 23:137–152PubMedCrossRefGoogle Scholar
  174. 174.
    Calhoun V, Adali T, Stevens M, Kiehl K, Pekar J (2005) Semi-blind ICA of fMRI: a method for utilizing hypothesis-derived time courses in a spatial ICA analysis. Neuroimage 25:527–538PubMedCrossRefGoogle Scholar
  175. 175.
    Thomas CG, Harshman RA, Menon RS (2002) Noise reduction in BOLD-based fMRI using component analysis. Neuroimage 17:1521–1537PubMedCrossRefGoogle Scholar
  176. 176.
    Kochiyama T, Morita T, Okada T, Yonekura Y, Matsumura M, Sadato N (2005) Removing the effects of task-related motion using independent-component analysis. Neuroimage 25:802–814PubMedCrossRefGoogle Scholar
  177. 177.
    Perlbarg V, Bellec P, Anton JL, Pelegrini-Issac M, Doyon J, Benali H (2007) CORSICA: correction of structured noise in fMRI by automatic identification of ICA components. Magn Reson Imaging 25:35–46PubMedCrossRefGoogle Scholar
  178. 178.
    Tohka J, Foerde K, Aron AR, Tom SM, Toga AW, Poldrack RA (2008) Automatic independent component labeling for artifact removal in fMRI. Neuroimage 39:1227–1245PubMedCrossRefGoogle Scholar
  179. 179.
    Bullmore ET, Brammer MJ, Rabe-Hesketh S et al (1999) Methods for diagnosis and treatment of stimulus-correlated motion in generic brain activation studies using fMRI. Hum Brain Mapp 7:38–48PubMedCrossRefGoogle Scholar
  180. 180.
    Morgan VL, Dawant BM, Li Y, Pickens DR (2007) Comparison of fMRI statistical software packages and strategies for analysis of images containing random and stimulus-correlated motion. Comput Med Imaging Graph 31:436–446PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Preibisch C, Raab P, Neumann K et al (2003) Event-related fMRI for the suppression of speech-associated artifacts in stuttering. Neuroimage 19:1076–1084PubMedCrossRefGoogle Scholar
  182. 182.
    Birn RM, Bandettini PA, Cox RW, Shaker R (1999) Event-related fMRI of tasks involving brief motion. Hum Brain Mapp 7:106–114PubMedCrossRefGoogle Scholar
  183. 183.
    Phelps EA, O’Connor KJ, Cunningham WA et al (2000) Performance on indirect measures of race evaluation predicts amygdala activation. J Cogn Neurosci 12:729–738PubMedCrossRefGoogle Scholar
  184. 184.
    Winston JS, Strange BA, O’Doherty J, Dolan RJ (2002) Automatic and intentional brain responses during evaluation of trustworthiness of faces. Nat Neurosci 5:277–283PubMedCrossRefGoogle Scholar
  185. 185.
    Singer T, Kiebel SJ, Winston JS, Dolan RJ, Frith CD (2004) Brain responses to the acquired moral status of faces. Neuron 41:653–662PubMedCrossRefGoogle Scholar
  186. 186.
    Campbell DT, Stanley JC (1966) Experimental and quasi-experimental designs for research. Houghton Mifflin, BostonGoogle Scholar
  187. 187.
    Poldrack RA, Wagner AD (2004) What can neuroimaging tell us about the mind? Insights from prefrontal cortex. Curr Dir Psychol Sci 13:177–181CrossRefGoogle Scholar
  188. 188.
    Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157PubMedCrossRefGoogle Scholar
  189. 189.
    Janz C, Heinrich SP, Kornmayer J, Bach M, Hennig J (2001) Coupling of neural activity and BOLD fMRI response: new insights by combination of fMRI and VEP experiments in transition from single events to continuous stimulation. Magn Reson Med 46:482–486PubMedCrossRefGoogle Scholar
  190. 190.
    Baas D, Aleman A, Kahn RS (2004) Lateralization of amygdala activation: a systematic review of functional neuroimaging studies. Brain Res Brain Res Rev 4:96–103CrossRefGoogle Scholar
  191. 191.
    Robinson S, Pripfl J, Bauer H, Moser M (2005) Empirical evidence for the minimum voxel size required for reliable 3 T fMRI of the amygdala. NeuroImage 26:S795Google Scholar
  192. 192.
    Habel U, Windischberger C, Derntl B et al (2007) Amygdala activation and facial expressions: explicit emotion discrimination versus implicit emotion processing. Neuropsychologia 45:2369–2377PubMedCrossRefGoogle Scholar
  193. 193.
    Sack AT, Linden DE (2003) Combining transcranial magnetic stimulation and functional imaging in cognitive brain research: possibilities and limitations. Brain Res Brain Res Rev 43:41–56PubMedCrossRefGoogle Scholar
  194. 194.
    Thayer JF, Brosschot JF (2005) Psychosomatics and psychopathology: looking up and down from the brain. Psychoneuroendocrinology 30:1050–1058PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.High Field MR CentreMedical University of ViennaViennaAustria
  2. 2.Department of Biomedical Imaging and Image-guided TherapyMedical University of ViennaViennaAustria
  3. 3.Division MR-PhysicsCenter for Medical Physics and Biomedical EngineeringViennaAustria
  4. 4.General and Biological Psychology Section, Faculty of PsychologyPhilipps-Universität MarburgMarburgGermany

Personalised recommendations