Skip to main content

Neuroimaging Approaches to the Study of Visual Attention

  • Protocol
  • First Online:
  • 2424 Accesses

Part of the book series: Neuromethods ((NM,volume 119))

Abstract

Selective attention is a core cognitive ability that enables organisms to effectively process and act upon relevant information while ignoring distracting events. Elucidating the neural bases of selective attention remains a key challenge for neuroscience and represents an essential aim in translational efforts to ameliorate attentional deficits in a wide variety of neurological and psychiatric disorders. Moreover, knowledge about the cognitive and neural mechanisms of attention is essential for developing and refining brain–machine interfaces, and for advancing methods for training and education. We will discuss how functional imaging methods have helped us to understand fundamental aspects of attention: How attention is controlled, focused on relevant inputs, and reoriented, and how this control results in the selection of relevant information. Work from our groups and from others will be reviewed. We will focus on fMRI methods, but where appropriate will include related discussion of electromagnetic recording methods used in conjunction with fMRI, including simultaneous EEG/fMRI methods.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. James W (1890) Principles of psychology. H Holt, New York

    Book  Google Scholar 

  2. Hv H (1867) Handbuch der physiologischen optik. Voss, Leipzig

    Google Scholar 

  3. Posner MI, Cohen Y (1984) Components of visual orienting. In: Bouma H, Bouwhis D (eds) Attention and performance. Erlbaum, Hillsdale, NJ, pp 531–556

    Google Scholar 

  4. Harter MR, Aine CJ (1984) Brain mechanisms of visual selective attention. In: Parasuraman R, Davies DR (eds) Varieties of attention. Academic, Orlando, pp 293–321

    Google Scholar 

  5. Malcolm GL, Shomstein S (2015) Object-based attention in real-world scenes. J Exp Psychol Gen 144:257–263

    Article  PubMed  Google Scholar 

  6. Broadbent DE (1958) Perception and communication. Pergamon, New York

    Book  Google Scholar 

  7. Deutsch JA, Deutsch D (1963) Attention – some theoretical considerations. Psychol Rev 70:80–90

    Article  CAS  PubMed  Google Scholar 

  8. Johnston WA, Heinz SP (1979) Depth of nontarget processing in an attention task. J Exp Psychol Hum Percept Perform 5:168–175

    Article  CAS  PubMed  Google Scholar 

  9. Hawkins HL, Hillyard SA, Luck SJ, Mouloua M, Downing CJ, Woodward DP (1990) Visual attention modulates signal detectability. J Exp Psychol Hum Percept Perform 16:802–811

    Article  CAS  PubMed  Google Scholar 

  10. Luck SJ, Hillyard SA, Mouloua M, Woldorff MG, Clark VP, Hawkins HL (1994) Effects of spatial cuing on luminance detectability: psychophysical and electrophysiological evidence for early selection. J Exp Psychol Hum Percept Perform 20:887–904

    Article  CAS  PubMed  Google Scholar 

  11. Palmer J, Ames CT, Lindsey DT (1993) Measuring the effect of attention on simple visual search. J Exp Psychol Hum Percept Perform 19:108–130

    Article  CAS  PubMed  Google Scholar 

  12. Hernández-Peón R, Scherrer R, Jouvet M (1956) Modification of electric activity in cochlear nucleus during “attention” in unanesthetized cats. Science 123:331–332

    Article  PubMed  Google Scholar 

  13. Naatanen R (1975) Selective attention and evoked potentials in humans–a critical review. Biol Psychol 2:237–307

    Article  CAS  PubMed  Google Scholar 

  14. Hillyard SA, Hink RF, Schwent VL, Picton TW (1973) Electrical signs of selective attention in the human brain. Science 182:177–180

    Article  CAS  PubMed  Google Scholar 

  15. Van Voorhis S, Hillyard SA (1977) Visual evoked potentials and selective attention to points in space. Percept Psychophys 22:54–62

    Article  Google Scholar 

  16. Eason R, Harter M, White C (1969) Effects of attention and arousal on visually evoked cortical potentials and reaction time in man. Physiol Behav 4:283–289

    Article  Google Scholar 

  17. Spong P, Haider M, Lindsley DB (1965) Selective attentiveness and cortical evoked responses to visual and auditory stimuli. Science 148:395–397

    Article  CAS  PubMed  Google Scholar 

  18. Nunez PL, Srinivasan R (2006) Electric fields of the brain: the neurophysics of EEG, 2nd edn. Oxford University Press, Oxford, New York

    Book  Google Scholar 

  19. Moran J, Desimone R (1985) Selective attention gates visual processing in the extrastriate cortex. Science 229:782–784

    Article  CAS  PubMed  Google Scholar 

  20. Chelazzi L, Miller EK, Duncan J, Desimone R (1993) A neural basis for visual search in inferior temporal cortex. Nature 363:345–347

    Article  CAS  PubMed  Google Scholar 

  21. Chelazzi L, Miller EK, Duncan J, Desimone R (2001) Responses of neurons in macaque area V4 during memory-guided visual search. Cereb Cortex 11:761–772

    Article  CAS  PubMed  Google Scholar 

  22. Luck SJ, Chelazzi L, Hillyard SA, Desimone R (1997) Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. J Neurophysiol 77:24–42

    CAS  PubMed  Google Scholar 

  23. McAdams CJ, Reid RC (2005) Attention modulates the responses of simple cells in monkey primary visual cortex. J Neurosci 25:11023–11033

    Article  CAS  PubMed  Google Scholar 

  24. Briggs F, Mangun GR, Usrey WM (2013) Attention enhances synaptic efficacy and the signal-to-noise ratio in neural circuits. Nature 499:476–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. McAlonan K, Cavanaugh J, Wurtz RH (2008) Guarding the gateway to cortex with attention in visual thalamus. Nature 456:391–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Corbetta M, Miezin FM, Dobmeyer S, Shulman GL, Petersen SE (1991) Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography. J Neurosci 11:2383–2402

    CAS  PubMed  Google Scholar 

  27. Heinze HJ, Mangun GR, Burchert W et al (1994) Combined spatial and temporal imaging of brain activity during visual selective attention in humans. Nature 372:543–546

    Article  CAS  PubMed  Google Scholar 

  28. Mangun GR, Hopfinger JB, Kussmaul CL, Fletcher EM, Heinze HJ (1997) Covariations in ERP and PET measures of spatial selective attention in human extrastriate visual cortex. Hum Brain Mapp 5:273–279

    Article  CAS  PubMed  Google Scholar 

  29. Hillyard SA, Munte TF (1984) Selective attention to color and location: an analysis with event-related brain potentials. Percept Psychophys 36:185–198

    Article  CAS  PubMed  Google Scholar 

  30. Mangun GR, Hillyard SA (1991) Modulations of sensory-evoked brain potentials indicate changes in perceptual processing during visual-spatial priming. J Exp Psychol Hum Percept Perform 17:1057–1074

    Article  CAS  PubMed  Google Scholar 

  31. Hopfinger JB, Buonocore MH, Mangun GR (2000) The neural mechanisms of top-down attentional control. Nat Neurosci 3:284–291

    Article  CAS  PubMed  Google Scholar 

  32. Giesbrecht B, Woldorff MG, Song AW, Mangun GR (2003) Neural mechanisms of top-down control during spatial and feature attention. Neuroimage 19:496–512

    Article  CAS  PubMed  Google Scholar 

  33. Tootell RBH, Hadjikhani N, Hall EK et al (1998) The retinotopy of visual spatial attention. Neuron 21:1409–1422

    Article  CAS  PubMed  Google Scholar 

  34. Desimone R, Duncan J (1995) Neural mechanisms of selective visual-attention. Annu Rev Neurosci 18:193–222

    Article  CAS  PubMed  Google Scholar 

  35. Posner MI, Petersen SE (1990) The attention system of the human brain. Annu Rev Neurosci 13:25–42

    Article  CAS  PubMed  Google Scholar 

  36. Gitelman DR, Nobre AC, Parrish TB et al (1999) A large-scale distributed network for covert spatial attention: further anatomical delineation based on stringent behavioural and cognitive controls. Brain 122(Pt 6):1093–1106

    Article  PubMed  Google Scholar 

  37. Mesulam MM (1981) A cortical network for directed attention and unilateral neglect. Ann Neurol 10:309–325

    Article  CAS  PubMed  Google Scholar 

  38. Posner MI, Snyder CR, Davidson BJ (1980) Attention and the detection of signals. J Exp Psychol 109:160–174

    Article  CAS  PubMed  Google Scholar 

  39. Harter MR, Miller SL, Price NJ, Lalonde ME, Keyes AL (1989) Neural processes involved in directing attention. J Cogn Neurosci 1:223–237

    Article  CAS  PubMed  Google Scholar 

  40. Corbetta M, Kincade JM, Ollinger JM, McAvoy MP, Shulman GL (2000) Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nat Neurosci 3:292–297

    Article  CAS  PubMed  Google Scholar 

  41. Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215

    Article  CAS  PubMed  Google Scholar 

  42. Corbetta M, Shulman GL (2011) Spatial neglect and attention networks. Annu Rev Neurosci 34(34):569–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. McMains SA, Fehd HM, Emmanouil TA, Kastner S (2007) Mechanisms of feature- and space-based attention: response modulation and baseline increases. J Neurophysiol 98:2110–2121

    Article  PubMed  Google Scholar 

  44. Kastner S, Pinsk MA, De Weerd P, Desimone R, Ungerleider LG (1999) Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron 22:751–761

    Article  CAS  PubMed  Google Scholar 

  45. Chawla D, Rees G, Friston KJ (1999) The physiological basis of attentional modulation in extrastriate visual areas. Nat Neurosci 2:671–676

    Article  CAS  PubMed  Google Scholar 

  46. Greenberg AS, Esterman M, Wilson D, Serences JT, Yantis S (2010) Control of spatial and feature-based attention in frontoparietal cortex. J Neurosci 30:14330–14339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Burock MA, Buckner RL, Woldorff MG, Rosen BR, Dale AM (1998) Randomized event-related experimental designs allow for extremely rapid presentation rates using functional MRI. Neuroreport 9:3735–3739

    Article  CAS  PubMed  Google Scholar 

  48. Ollinger JM, Corbetta M, Shulman GL (2001) Separating processes within a trial in event-related functional MRI – II analysis. Neuroimage 13:218–229

    Article  CAS  PubMed  Google Scholar 

  49. Ollinger JM, Shulman GL, Corbetta M (2001) Separating processes within a trial in event-related functional MRI - I. The method. Neuroimage 13:210–217

    Article  CAS  PubMed  Google Scholar 

  50. Woldorff MG, Hazlett CJ, Fichtenholtz HM, Weissman DH, Dale AM, Song AW (2004) Functional parcellation of attentional control regions of the brain. J Cogn Neurosci 16:149–165

    Article  PubMed  Google Scholar 

  51. Walsh BJ, Buonocore MH, Carter CS, Mangun GR (2011) Integrating conflict detection and attentional control mechanisms. J Cogn Neurosci 23:2211–2221

    Article  PubMed  Google Scholar 

  52. Corbetta M (1998) Frontoparietal cortical networks for directing attention and the eye to visual locations: identical, independent, or overlapping neural systems? Proc Natl Acad Sci U S A 95:831–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fannon SP, Saron CD, Mangun GR (2007) Baseline shifts do not predict attentional modulation of target processing during feature-based visual attention. Front Hum Neurosci 1:7

    Article  PubMed  Google Scholar 

  54. Mangun GR, Fannon SP (2007) Networks for attentional control and selection in spatial vision. In: Mast F, Jäncke L (eds) Spatial processing in navigation, imagery and perception. Springer, New York, pp 411–432

    Chapter  Google Scholar 

  55. Kastner S, Ungerleider LG (2000) Mechanisms of visual attention in the human cortex. Annu Rev Neurosci 23:315–341

    Article  CAS  PubMed  Google Scholar 

  56. Kincade JM, Abrams RA, Astafiev SV, Shulman GL, Corbetta M (2005) An event-related functional magnetic resonance imaging study of voluntary and stimulus-driven orienting of attention. J Neurosci 25:4593–4604

    Article  CAS  PubMed  Google Scholar 

  57. Wilson KD, Woldorff MG, Mangun GR (2005) Control networks and hemispheric asymmetries in parietal cortex during attentional orienting in different spatial reference frames. Neuroimage 25:668–683

    Article  PubMed  Google Scholar 

  58. Geng JJ, Mangun GR (2009) Anterior intraparietal sulcus is sensitive to bottom-up attention driven by stimulus salience. J Cogn Neurosci 21:1584–1601

    Article  PubMed  Google Scholar 

  59. Cohen YE, Andersen RA (2002) A common reference frame for movement plans in the posterior parietal cortex. Nat Rev Neurosci 3:553–562

    Article  CAS  PubMed  Google Scholar 

  60. Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25

    Article  CAS  PubMed  Google Scholar 

  61. Goodale MA, Westwood DA (2004) An evolving view of duplex vision: separate but interacting cortical pathways for perception and action. Curr Opin Neurobiol 14:203–211

    Article  CAS  PubMed  Google Scholar 

  62. Goodale MA (2014) How (and why) the visual control of action differs from visual perception. Proc Biol Sci 281:20140337

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale MA, Mansfield RJW (eds) Analysis of visual behavior. MIT Press, Cambridge, pp 549–586

    Google Scholar 

  64. Corbetta M, Tansy AP, Stanley CM, Astafiev SV, Snyder AZ, Shulman GL (2005) A functional MRI study of preparatory signals for spatial location and objects. Neuropsychologia 43:2041–2056

    Article  PubMed  Google Scholar 

  65. Moore T, Fallah M (2004) Microstimulation of the frontal eye field and its effects on covert spatial attention. J Neurophysiol 91:152–162

    Article  PubMed  Google Scholar 

  66. Nobre AC, Sebestyen GN, Miniussi C (2000) The dynamics of shifting visuospatial attention revealed by event-related potentials. Neuropsychologia 38:964–974

    Article  CAS  PubMed  Google Scholar 

  67. Astafiev SV, Shulman GL, Stanley CM, Snyder AZ, Van Essen DC, Corbetta M (2003) Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing. J Neurosci 23:4689–4699

    CAS  PubMed  Google Scholar 

  68. Corbetta M, Patel G, Shulman GL (2008) The reorienting system of the human brain: from environment to theory of mind. Neuron 58:306–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shulman GL, Pope DLW, Astafiev SV, McAvoy MP, Snyder AZ, Corbetta M (2010) Right hemisphere dominance during spatial selective attention and target detection occurs outside the dorsal frontoparietal network. J Neurosci 30:3640–3651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME (2006) Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci U S A 103:10046–10051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sestieri C, Pizzella V, Cianflone F, Romani GL, Corbetta M (2008) Sequential activation of human oculomotor centers during planning of visually guided eye movements: a combined fMRI-MEG study. Front Hum Neurosci 1:10.3389/neuro.3309/3001.2007

  72. Yamaguchi S, Knight RT (1991) Anterior and posterior association cortex contributions to the somatosensory P300. J Neurosci 11:2039–2054

    CAS  PubMed  Google Scholar 

  73. He BJ, Snyder AZ, Vincent JL, Epstein A, Shulman GL, Corbetta M (2007) Breakdown of functional connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect. Neuron 53:905–918

    Article  CAS  PubMed  Google Scholar 

  74. Chica AB, Bartolomeo P, Valero-Cabré A (2011) Dorsal and ventral parietal contributions to spatial orienting in the human brain. J Neurosci 31:8143–8149

    Article  CAS  PubMed  Google Scholar 

  75. Shulman GL, McAvoy MP, Cowan MC et al (2003) Quantitative analysis of attention and detection signals during visual search. J Neurophysiol 90:3384–3397

    Article  PubMed  Google Scholar 

  76. Vossel S, Geng J, Fink GR (2014) Dorsal and ventral attention systems: distinct neural circuits but collaborative roles. Neuroscientist 20:150–159

    Article  PubMed  PubMed Central  Google Scholar 

  77. Geng JJ, Vossel S (2013) Re-evaluating the role of TPJ in attentional control: contextual updating? Neurosci Biobehav Rev 37:2608–2620

    Article  PubMed  PubMed Central  Google Scholar 

  78. DiQuattro NE, Sawaki R, Geng JJ (2014) Effective connectivity during feature-based attentional capture: evidence against the attentional reorienting hypothesis of TPJ. Cereb Cortex 24:3131–3141

    Article  PubMed  Google Scholar 

  79. Friston KJ, Harrison L, Penny W (2003) Dynamic causal modelling. Neuroimage 19:1273–1302

    Article  CAS  PubMed  Google Scholar 

  80. Friston KJ, Li B, Daunizeau J, Stephan KE (2011) Network discovery with DCM. Neuroimage 56:1202–1221

    Article  PubMed  PubMed Central  Google Scholar 

  81. Folk CL, Remington RW, Johnston JC (1992) Involuntary covert orienting is contingent on attentional control settings. J Exp Psychol Hum Percept Perform 18:1030–1044

    Article  CAS  PubMed  Google Scholar 

  82. Serences JT, Shomstein S, Leber AB, Golay X, Egeth HE, Yantis S (2005) Coordination of voluntary and stimulus-driven attentional control in human cortex. Psychol Sci 16:114–122

    Article  PubMed  Google Scholar 

  83. Petersen SE, Posner MI (2012) The attention system of the human brain: 20 years after. Annu Rev Neurosci 35:73–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38

    Article  PubMed  Google Scholar 

  85. Liu Y, Bengson J, Huang H, Mangun GR, Ding M (2016) Top-down modulation of neural activity in anticipatory visual attention: control mechanisms revealed by simultaneous EEG-fMRI. Cereb Cortex 26:517–529

    Google Scholar 

  86. Worden MS, Foxe JJ, Wang N, Simpson GV (2000) Anticipatory biasing of visuospatial attention indexed by retinotopically specific alpha-band electroencephalography increases over occipital cortex. J Neurosci 20:RC63

    CAS  PubMed  Google Scholar 

  87. Sauseng P, Klimesch W, Stadler W et al (2005) A shift of visual spatial attention is selectively associated with human EEG alpha activity. Eur J Neurosci 22:2917–2926

    Article  CAS  PubMed  Google Scholar 

  88. Thut G, Nietzel A, Brandt SA, Pascual-Leone A (2006) Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. J Neurosci 26:9494–9502

    Article  CAS  PubMed  Google Scholar 

  89. Rajagovindan R, Ding M (2011) From prestimulus alpha oscillation to visual-evoked response: an inverted-U function and its attentional modulation. J Cogn Neurosci 23:1379–1394

    Article  PubMed  Google Scholar 

  90. Romei V, Brodbeck V, Michel C, Amedi A, Pascual-Leone A, Thut G (2008) Spontaneous fluctuations in posterior alpha-band EEG activity reflect variability in excitability of human visual areas. Cereb Cortex 18:2010–2018

    Article  PubMed  Google Scholar 

  91. Romei V, Gross J, Thut G (2010) On the role of prestimulus alpha rhythms over occipito-parietal areas in visual input regulation: correlation or causation? J Neurosci 30:8692–8697

    Article  CAS  PubMed  Google Scholar 

  92. Klimesch W, Sauseng P, Hanslmayr S (2007) EEG alpha oscillations: the inhibition-timing hypothesis. Brain Res Rev 53:63–88

    Article  PubMed  Google Scholar 

  93. Jensen O, Mazaheri A (2010) Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front Hum Neurosci 4:186

    Article  PubMed  PubMed Central  Google Scholar 

  94. Haegens S, Osipova D, Oostenveld R, Jensen O (2010) Somatosensory working memory performance in humans depends on both engagement and disengagement of regions in a distributed network. Hum Brain Mapp 31:26–35

    PubMed  Google Scholar 

  95. Anderson KL, Ding M (2011) Attentional modulation of the somatosensory mu rhythm. Neuroscience 180:165–180

    Article  CAS  PubMed  Google Scholar 

  96. Foxe JJ, Simpson GV, Ahlfors SP (1998) Parieto-occipital approximately 10 Hz activity reflects anticipatory state of visual attention mechanisms. Neuroreport 9:3929–3933

    Article  CAS  PubMed  Google Scholar 

  97. Fu KM, Foxe JJ, Murray MM, Higgins BA, Javitt DC, Schroeder CE (2001) Attention-dependent suppression of distracter visual input can be cross-modally cued as indexed by anticipatory parieto-occipital alpha-band oscillations. Brain Res Cogn Brain Res 12:145–152

    Article  CAS  PubMed  Google Scholar 

  98. Bollimunta A, Chen Y, Schroeder CE, Ding M (2008) Neuronal mechanisms of cortical alpha oscillations in awake-behaving macaques. J Neurosci 28:9976–9988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Handel BF, Haarmeier T, Jensen O (2011) Alpha oscillations correlate with the successful inhibition of unattended stimuli. J Cogn Neurosci 23:2494–2502

    Article  PubMed  Google Scholar 

  100. Haegens S, Handel BF, Jensen O (2011) Top-down controlled alpha band activity in somatosensory areas determines behavioral performance in a discrimination task. J Neurosci 31:5197–5204

    Article  CAS  PubMed  Google Scholar 

  101. Kelly SP, Gomez-Ramirez M, Foxe JJ (2009) The strength of anticipatory spatial biasing predicts target discrimination at attended locations: a high-density EEG study. Eur J Neurosci 30:2224–2234

    Article  PubMed  Google Scholar 

  102. Dosenbach NU, Visscher KM, Palmer ED et al (2006) A core system for the implementation of task sets. Neuron 50:799–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Dosenbach NU, Fair DA, Cohen AL, Schlaggar BL, Petersen SE (2008) A dual-networks architecture of top-down control. Trends Cogn Sci 12:99–105

    Article  PubMed  PubMed Central  Google Scholar 

  104. Sakai K (2008) Task set and prefrontal cortex. Annu Rev Neurosci 31:219–245

    Article  CAS  PubMed  Google Scholar 

  105. Mangun GR, Buonocore MH, Girelli M, Jha AP (1998) ERP and fMRI measures of visual spatial selective attention. Hum Brain Mapp 6:383–389

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George R. Mangun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Mangun, G.R., Liu, Y., Bengson, J.J., Fannon, S.P., DiQuattro, N.E., Geng, J.J. (2016). Neuroimaging Approaches to the Study of Visual Attention. In: Filippi, M. (eds) fMRI Techniques and Protocols. Neuromethods, vol 119. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-5611-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-5611-1_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-5609-8

  • Online ISBN: 978-1-4939-5611-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics