fMRI of Language Systems

  • Jeffrey R. BinderEmail author
Part of the Neuromethods book series (NM, volume 119)


Language refers to the uniquely human capacity for communication through productive combination of symbolic representations. Functional neuroimaging studies have in recent decades greatly expanded our knowledge of the brain systems supporting language, producing a dramatic reawakening of interest in this topic and a call to revise and extend the nineteenth century neuroanatomical model formulated by Broca, Wernicke, and others. This chapter presents some theoretical issues regarding functional imaging of language systems, a model of the functional neuroanatomy of language based on recent empirical results in several selected processing domains, and a survey of language mapping paradigms in common clinical use. A central theme is that interpretation of fMRI language studies depends on an informed analysis of the cognitive processes engaged during scanning. This analytic approach can help avoid common pitfalls in task design that limit the sensitivity and specificity of language mapping studies and should encourage the development of a standardized methodological and conceptual framework for such studies.

Key words

fMRI Language Semantics Phonology Orthography 


  1. 1.
    Broca P (1861) Remarques sur le siège de la faculté du langage articulé; suivies d’une observation d’aphemie. Bulletin de la Société Anatomique de Paris 6:330–357Google Scholar
  2. 2.
    Wernicke C (1874) Der aphasische Symptomenkomplex. Cohn & Weigert, BreslauGoogle Scholar
  3. 3.
    Lichtheim L (1885) On aphasia. Brain 7:433–484CrossRefGoogle Scholar
  4. 4.
    Geschwind N (1971) Aphasia. N Engl J Med 284(12):654–656PubMedCrossRefGoogle Scholar
  5. 5.
    Binder JR, Frost JA, Hammeke TA, Cox RW, Rao SM et al (1997) Human brain language areas identified by functional MRI. J Neurosci 17(1):353–362PubMedGoogle Scholar
  6. 6.
    Démonet J-F, Thierry G, Cardebat D (2005) Renewal of the neurophysiology of language: functional neuroimaging. Physiol Rev 85(1):49–95PubMedCrossRefGoogle Scholar
  7. 7.
    Binder JR, Price CJ (2001) Functional imaging of language. In: Cabeza R, Kingstone A (eds) Handbook of functional neuroimaging of cognition. MIT Press, Cambridge, MA, pp 187–251Google Scholar
  8. 8.
    Macleod CM (1991) Half a century of research on the Stroop effect: an integrative review. Psychol Bull 109:163–203PubMedCrossRefGoogle Scholar
  9. 9.
    Reicher GM (1969) Perceptual recognition as a function of meaningfulness of stimulus material. J Exp Psychol 81:274–280CrossRefGoogle Scholar
  10. 10.
    Warren RM, Obusek CJ (1971) Speech perception and phonemic restorations. Percept Psychophys 9:358–362CrossRefGoogle Scholar
  11. 11.
    Ganong WF (1980) Phonetic categorization in auditory word perception. J Exp Psychol Hum Percept Perform 6:110–115PubMedCrossRefGoogle Scholar
  12. 12.
    Marslen-Wilson WD, Tyler LK (1981) Central processes in speech understanding. Philos Trans R Soc Lond B 295:317–332CrossRefGoogle Scholar
  13. 13.
    Carr TH, McCauley C, Sperber RD, Parmalee CM (1982) Words, pictures, and priming: on semantic activation, conscious identification, and the automaticity of information processing. J Exp Psychol Hum Percept Perform 8:757–777PubMedCrossRefGoogle Scholar
  14. 14.
    Marcel AJ (1983) Conscious and unconscious perception: Experiments on visual masking and word recognition. Cogn Psychol 15:197–237PubMedCrossRefGoogle Scholar
  15. 15.
    Van Orden GC (1987) A ROWS is a ROSE: spelling, sound, and reading. Mem Cogn 15(3):181–198CrossRefGoogle Scholar
  16. 16.
    Burton MW, Baum SR, Blumstein SE (1989) Lexical effects on phonetic categorization of speech: the role of acoustic structure. J Exp Psychol Hum Percept Perform 15:567–575PubMedCrossRefGoogle Scholar
  17. 17.
    Glaser WR (1992) Picture naming. Cognition 42:61–105PubMedCrossRefGoogle Scholar
  18. 18.
    James W (1890) Principles of psychology. Dover, New YorkCrossRefGoogle Scholar
  19. 19.
    Hebb DO (1954) The problem of consciousness and introspection. In: Adrian ED, Bremer F, Jasper HH (eds) Brain mechanisms and consciousness. A symposium. Charles C. Thomas, Springfield, IL, pp 402–421Google Scholar
  20. 20.
    Miller GA, Galanter E, Pribram K (1960) Plans and the structure of behavior. Holt, New YorkCrossRefGoogle Scholar
  21. 21.
    Pope KS, Singer JL (1976) Regulation of the stream of consciousness: Toward a theory of ongoing thought. In: Schwartz GE, Shapiro D (eds) Consciousness and self-regulation. Plenum, New York, pp 101–135Google Scholar
  22. 22.
    Picton TW, Stuss DT (1994) Neurobiology of conscious experience. Curr Opin Neurobiol 4:256–265PubMedCrossRefGoogle Scholar
  23. 23.
    Antrobus JS, Singer JL, Greenberg S (1966) Studies in the stream of consciousness: experimental enhancement and suppression of spontaneous cognitive processes. Percept Mot Skills 23:399–417CrossRefGoogle Scholar
  24. 24.
    Teasdale JD, Proctor L, Lloyd CA, Baddeley AD (1993) Working memory and stimulus-independent thought: effects of memory load and presentation rate. Eur J Cogn Psychol 5(4):417–433CrossRefGoogle Scholar
  25. 25.
    Binder JR, Frost JA, Hammeke TA, Bellgowan PSF, Rao SM et al (1999) Conceptual processing during the conscious resting state: a functional MRI study. J Cogn Neurosci 11(1):80–93PubMedCrossRefGoogle Scholar
  26. 26.
    McKiernan KA, Kaufman JN, Kucera-Thompson J, Binder JR (2003) A parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging. J Cogn Neurosci 15(3):394–408PubMedCrossRefGoogle Scholar
  27. 27.
    Révész G (ed) (1954) Thinking and speaking: a symposium. North Holland Publishing, AmsterdamGoogle Scholar
  28. 28.
    Weiskrantz L (ed) (1988) Thought without language. Clarendon, OxfordGoogle Scholar
  29. 29.
    Vygotsky LS (1962) Thought and language. Wiley, New YorkCrossRefGoogle Scholar
  30. 30.
    Karmiloff-Smith A (1992) Beyond modularity: a developmental perspective on cognitive science. MIT Press, Cambridge, MAGoogle Scholar
  31. 31.
    Andreasen NC, O’Leary DS, Cizadlo T, Arndt S, Rezai K et al (1995) Remembering the past: two facets of episodic memory explored with positron emission tomography. Am J Psychiatry 152:1576–1585PubMedCrossRefGoogle Scholar
  32. 32.
    Shulman GL, Fiez JA, Corbetta M, Buckner RL, Meizin FM et al (1997) Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. J Cogn Neurosci 9(5):648–663PubMedCrossRefGoogle Scholar
  33. 33.
    Mazoyer B, Zago L, Mellet E, Bricogne S, Etard O et al (2001) Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Res Bull 54(3):287–298PubMedCrossRefGoogle Scholar
  34. 34.
    Stark CE, Squire LR (2001) When zero is not zero: the problem of ambiguous baseline conditions in fMRI. Proc Natl Acad Sci U S A 98(22):12760–12766PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    McKiernan KA, D’Angelo BR, Kaufman JN, Binder JR (2006) Interrupting the “stream of consciousness”: an fMRI investigation. Neuroimage 29(4):1185–1191PubMedCrossRefGoogle Scholar
  36. 36.
    Smallwood J, Schooler JW (2006) The restless mind. Psychol Bull 132(6):946–958PubMedCrossRefGoogle Scholar
  37. 37.
    Mason MF, Norton MI, Van Horn JD, Wegner DM, Grafton ST et al (2007) Wandering minds: the default network and stimulus-independent thought. Science 315(5810):393–395PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Andrews-Hanna JR (2012) The brain’s default network and its adaptive role in internal mentation. Neuroscientist 18(3):251–270PubMedCrossRefGoogle Scholar
  39. 39.
    Abutalebi J, Cappa S, Perani D (2005) What can functional neuroimaging tell us about the bilingual brain? In: Kroll J, de Groot AMB (eds) Handbook of bilingualism: psycholinguistic approaches. Oxford University Press, New York, pp 497–515Google Scholar
  40. 40.
    Hernandez A, Li P, MacWhinney B (2005) The emergence of competing modules in bilingualism. Trends Cogn Sci 9(5):220–225PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Corina DP, Knapp H (2006) Sign language processing and the mirror neuron system. Cortex 42(4):529–539PubMedCrossRefGoogle Scholar
  42. 42.
    MacSweeney M, Capek CM, Campbell R, Woll B (2008) The signing brain: the neurobiology of sign language. Trends Cogn Sci 12(11):432–440PubMedCrossRefGoogle Scholar
  43. 43.
    Corina D, Singleton J (2009) Developmental social cognitive neuroscience: insights from deafness. Child Dev 80(4):952–967PubMedCrossRefGoogle Scholar
  44. 44.
    Emmorey K, McCullough S (2009) The bimodal bilingual brain: effects of sign language experience. Brain Lang 109:124–132PubMedCrossRefGoogle Scholar
  45. 45.
    Kotz SA (2009) A critical review of ERP and fMRI evidence on L2 syntactic processing. Brain Lang 109(2):68–74PubMedCrossRefGoogle Scholar
  46. 46.
    van Heuven WJ, Dijkstra T (2010) Language comprehension in the bilingual brain: fMRI and ERP support for psycholinguistic models. Brain Res Rev 64(1):104–122PubMedCrossRefGoogle Scholar
  47. 47.
    Buchweitz A, Prat C (2013) The bilingual brain: flexibility and control in the human cortex. Phys Life Rev 10(4):428–443PubMedCrossRefGoogle Scholar
  48. 48.
    Li P, Legault J, Litcofsky KA (2014) Neuroplasticity as a function of second language learning: anatomical changes in the human brain. Cortex 58:301–324PubMedCrossRefGoogle Scholar
  49. 49.
    Bogen JE, Bogen GM (1976) Wernicke’s region – where is it? Ann NY Acad Sci 290:834–843CrossRefGoogle Scholar
  50. 50.
    Démonet JF, Chollet F, Ramsay S, Cardebat D, Nespoulous JL et al (1992) The anatomy of phonological and semantic processing in normal subjects. Brain 115:1753–1768PubMedCrossRefGoogle Scholar
  51. 51.
    Zatorre RJ, Evans AC, Meyer E, Gjedde A (1992) Lateralization of phonetic and pitch discrimination in speech processing. Science 256:846–849PubMedCrossRefGoogle Scholar
  52. 52.
    Mummery CJ, Ashburner J, Scott SK, Wise RJS (1999) Functional neuroimaging of speech perception in six normal and two aphasic subjects. J Acoust Soc Am 106:449–457PubMedCrossRefGoogle Scholar
  53. 53.
    Belin P, Zatorre RJ, Lafaille P, Ahad P, Pike B (2000) Voice-selective areas in human auditory cortex. Nature 403:309–312PubMedCrossRefGoogle Scholar
  54. 54.
    Binder JR, Frost JA, Hammeke TA, Bellgowan PSF, Springer JA et al (2000) Human temporal lobe activation by speech and nonspeech sounds. Cereb Cortex 10:512–528PubMedCrossRefGoogle Scholar
  55. 55.
    Blumstein SE, Myers EB, Rissman J (2005) The perception of voice onset time: an fMRI investigation of phonetic category structure. J Cogn Neurosci 17(9):1353–1366PubMedCrossRefGoogle Scholar
  56. 56.
    Desai R, Liebenthal E, Possing ET, Waldron E, Binder JR (2005) Volumetric vs surface-based alignment for localization of auditory cortex activation. Neuroimage 26(4):1019–1029PubMedCrossRefGoogle Scholar
  57. 57.
    Turkeltaub PE, Coslett HB (2010) Localization of sublexical speech perception components. Brain Lang 114:1–15PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Dehaene-Lambertz G, Pallier C, Serniclaes W, Sprenger-Charolles L, Jobert A et al (2005) Neural correlates of switching from auditory to speech perception. Neuroimage 24:21–33PubMedCrossRefGoogle Scholar
  59. 59.
    Liebenthal E, Binder JR, Spitzer SM, Possing ET, Medler DA (2005) Neural substrates of phonemic perception. Cerebral Cortex 15:1621–1631PubMedCrossRefGoogle Scholar
  60. 60.
    Möttönen R, Calvert GA, Jaaskelainen IP, Matthews PM, Thesen A et al (2006) Perceiving identical sounds as speech or non-speech modulates activity in the left posterior superior temporal sulcus. Neuroimage 30:563–569PubMedCrossRefGoogle Scholar
  61. 61.
    Obleser J, Zimmerman J, Van Meter J, Rauschecker JP (2007) Multiple stages of auditory speech perception reflected in event-related fMRI. Cereb Cortex 17:2251–2257PubMedCrossRefGoogle Scholar
  62. 62.
    Desai R, Liebenthal E, Waldron E, Binder JR (2008) Left posterior temporal regions are sensitive to auditory categorization. J Cogn Neurosci 20:1174–1188PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Liebenthal E, Desai R, Ellingson MM, Ramachandran B, Desai A et al (2010) Specialization along the left superior temporal sulcus for phonemic and non-phonemic categorization. Cerebral Cortex 20:2958–2970PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Barrett AM (1910) A case of pure word-deafness with autopsy. J Nerv Ment Dis 37(2):73–92CrossRefGoogle Scholar
  65. 65.
    Henschen SE (1918–1919) On the hearing sphere. Acta Otolaryngol 1:423–486Google Scholar
  66. 66.
    Wohlfart G, Lindgren A, Jernelius B (1952) Clinical picture and morbid anatomy in a case of “pure word deafness”. J Nerv Ment Dis 116:818–827PubMedCrossRefGoogle Scholar
  67. 67.
    Lhermitte F, Chain F, Escourolle R, Ducarne B, Pillon A et al (1972) Etude des troubles perceptifs auditifs dans les lésions temporales bilatérales. Revue Neurologique 24:327–351Google Scholar
  68. 68.
    Kanshepolsky J, Kelley J, Waggener JD (1973) A cortical auditory disorder: clinical, audiologic and pathologic aspects. Neurology 23:699–705PubMedCrossRefGoogle Scholar
  69. 69.
    Buchman AS, Garron DC, Trost-Cardamone JE, Wichter MD, Schwartz D (1986) Word deafness: one hundred years later. J Neurol Neurosurg Psychiatry 49:489–499PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Poeppel D (2001) Pure word deafness and the bilateral processing of the speech code. Cogn Sci 25:679–693CrossRefGoogle Scholar
  71. 71.
    Liepmann H, Storch E (1902) Der mikroskopische gehirnbefund bei dem fall gorstelle. Monatsschrift fur Psychiatrie und Neurologie 11:115–120CrossRefGoogle Scholar
  72. 72.
    Stefanatos GA, Gershkoff A, Madigan S (2005) On pure word deafness, temporal processing and the left hemisphere. J Int Neuropsychol Soc 11(4):456–470PubMedGoogle Scholar
  73. 73.
    Déjerine J (1891) Sur un cas de cécité verbal avec agraphie, suivi d’autopsie. C R Seances Soc Biol 3:197–201Google Scholar
  74. 74.
    Déjerine J (1892) Contribution à l’étude anatomo-pathologique et clinique des différentes variétés de cécité verbale. C R Seances Soc Biol 44(2):61–90Google Scholar
  75. 75.
    Déjerine J, Vialet N (1893) Contribution a l’étude de la localisation anatomique de la cécité verbale pure. C R Seances Soc Biol 45:790–793Google Scholar
  76. 76.
    Geschwind N (1965) Disconnection syndromes in animals and man. Brain 88:237–294, 585-644PubMedCrossRefGoogle Scholar
  77. 77.
    Greenblatt SH (1976) Subangular alexia without agraphia or hemianopsia. Brain Lang 3:229–245PubMedCrossRefGoogle Scholar
  78. 78.
    Vincent FM, Sadowsky CH et al (1977) Alexia without agraphia, hemianopia, or color-naming defect: a disconnection syndrome. Neurology 27:689–691PubMedCrossRefGoogle Scholar
  79. 79.
    Henderson VW (1986) Anatomy of posterior pathways in reading: a reassessment. Brain Lang 29:119–133PubMedCrossRefGoogle Scholar
  80. 80.
    Binder JR, Mohr JP (1992) The topography of callosal reading pathways: a case-control analysis. Brain 115:1807–1826PubMedCrossRefGoogle Scholar
  81. 81.
    Beversdorf DQ, Ratcliffe NR, Rhodes CH, Reeves AG (1997) Pure alexia: clinical-pathological evidence for a lateralized visual language association cortex. Clin Neuropathol 16(6):328–331PubMedGoogle Scholar
  82. 82.
    Sakurai Y, Takeuchi S, Takada T, Horiuchi E, Nakase H et al (2000) Alexia caused by a fusiform or posterior inferior temporal lesion. J Neuro Sci 178:42–51CrossRefGoogle Scholar
  83. 83.
    Leff AP, Crewes H, Plant GT, Scott SK, Kennard C et al (2001) The functional anatomy of single-word reading in patients with hemianopic and pure alexia. Brain 124:510–521PubMedCrossRefGoogle Scholar
  84. 84.
    Cohen L, Martinaud O, Lemer C, Lehericy S, Samson Y et al (2003) Visual word recognition in the left and right hemispheres: anatomical and functional correlates of peripheral alexias. Cereb Cortex 13:1313–1333PubMedCrossRefGoogle Scholar
  85. 85.
    Tarkiainen A, Helenius P, Hansen PC, Cornelissen PL, Salmelin R (1999) Dynamics of letter string perception in the human occipitotemporal cortex. Brain 122:2119–2131PubMedCrossRefGoogle Scholar
  86. 86.
    Cohen L, Dehaene S, Naccache L, Lehéricy S, Dehaene-Lambertz G et al (2000) The visual word form area. Spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. Brain 123:291–307PubMedCrossRefGoogle Scholar
  87. 87.
    Dehaene S, Naccache L, Cohen L, Bihan DL, Mangin JF et al (2001) Cerebral mechanisms of word masking and unconscious repetition priming. Nat Neurosci 4(7):752–758PubMedCrossRefGoogle Scholar
  88. 88.
    Polk TA, Farah MJ (2002) Functional MRI evidence for an abstract, not perceptual, word-form area. J Exp Psychol Gen 131:65–72PubMedCrossRefGoogle Scholar
  89. 89.
    Cohen L, Jobert A, Le Bihanc D, Dehaene S (2004) Distinct unimodal and multimodal regions for word processing in the left temporal cortex. Neuroimage 23:1256–1270PubMedCrossRefGoogle Scholar
  90. 90.
    Vinckier F, Dehaene S, Jobert A, Dubus J, Sigman M et al (2007) Hierarchical coding of letter strings in the ventral stream: dissecting the inner organization of the visual word-form system. Neuron 55(1):143–156PubMedCrossRefGoogle Scholar
  91. 91.
    Glezer LS, Jiang X, Riesenhuber M (2009) Evidence for highly selective neuronal tuning of whole words in the “Visual Word Form Area”. Neuron 62:199–204PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Mano QR, Humphries CJ, Desai R, Seidenberg MS, Osmon DC et al (2013) The role of left occipitotemporal cortex in reading: reconciling stimulus, task, and lexicality effects. Cereb Cortex 23(4):988–1001PubMedCrossRefGoogle Scholar
  93. 93.
    Binder JR, Medler DA, Westbury CF, Liebenthal E, Buchanan L (2006) Tuning of the human left fusiform gyrus to sublexical orthographic structure. Neuroimage 33:739–748PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Patterson KE, Kay J (1982) Letter-by-letter reading: psychological descriptions of a neurological syndrome. Q J Exp Psychol 34A:411–442CrossRefGoogle Scholar
  95. 95.
    Reuter-Lorenz PA, Brunn JL (1990) A prelexical basis for letter-by-letter reading: a case study. Cognit Neuropsychol 7:1–20CrossRefGoogle Scholar
  96. 96.
    Behrmann M, Plaut DC, Nelson J (1998) A literature review and new data supporting an interactive activation account of letter-by-letter reading. In: Coltheart M (ed) Pure alexia (letter-by-letter reading). Pscyhology, Hove, UK, pp 7–51Google Scholar
  97. 97.
    Liepmann H, Pappenheim M (1914) Über einem Fall von sogenannter Leitungsaphasie mit anatomischer Befund. Z Gesamte Neurol Psychiatr 27:1–41Google Scholar
  98. 98.
    Benson DF, Sheremata WA, Bouchard R, Segarra JM, Price D et al (1973) Conduction aphasia. A clinicopathological study. Arch Neurol 28:339–346PubMedCrossRefGoogle Scholar
  99. 99.
    Damasio H, Damasio AR (1980) The anatomical basis of conduction aphasia. Brain 103:337–350PubMedCrossRefGoogle Scholar
  100. 100.
    Anderson JM, Gilmore R, Roper S, Crosson B, Bauer RM et al (1999) Conduction aphasia and the arcuate fasciculus: a reexamination of the Wernicke-Geschwind model. Brain Lang 70:1–12PubMedCrossRefGoogle Scholar
  101. 101.
    Quigg M, Fountain NB (1999) Conduction aphasia elicited by stimulation of the left posterior superior temporal gyrus. J Neurol Neurosurg Psychiatry 66:393–396PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Axer H, Keyserlingk AG, Berks G, Keyserlingk DF (2001) Supra- and infrasylvian conduction aphasia. Brain Lang 76:317–331PubMedCrossRefGoogle Scholar
  103. 103.
    Fridriksson J, Kjartansson O, Morgan PS, Hjaltason H, Magnusdottir S et al (2010) Impaired speech repetition and left parietal lobe damage. J Neurosci 30:11057–11061PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Buchsbaum BR, Baldo J, D’Esposito M, Dronkers N, Okada K et al (2011) Conduction aphasia, sensory-motor integration, and phonological short-term memory: an aggregate analysis of lesion and fMRI data. Brain Lang 119:119–128PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Roeltgen DP, Sevush S, Heilman KM (1983) Phonological agraphia: writing by the lexical-semantic route. Neurology 33:755–765PubMedCrossRefGoogle Scholar
  106. 106.
    Alexander MP, Friedman RB, Loverso F, Fischer RS (1992) Lesion localization of phonological agraphia. Brain Lang 43:83–95PubMedCrossRefGoogle Scholar
  107. 107.
    Rapcsak SZ, Beeson PM, Henry ML, Leyden A, Kim E et al (2009) Phonological dyslexia and dysgraphia: cognitive mechanisms and neural substrates. Cortex 45(5):575–591PubMedCrossRefGoogle Scholar
  108. 108.
    Pillay SB, Stengel BC, Humphries C, Book DS, Binder JR (2014) Cerebral localization of impaired phonological retrieval during rhyme judgment. Ann Neurol 76:738–746PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Howard D, Patterson K, Wise R, Brown WD, Friston K et al (1992) The cortical localization of the lexicons. Brain 115:1769–1782PubMedCrossRefGoogle Scholar
  110. 110.
    Price CJ, Wise RJS, Watson JDG, Patterson K, Howard D et al (1994) Brain activity during reading. The effects of exposure duration and task. Brain 117:1255–1269PubMedCrossRefGoogle Scholar
  111. 111.
    Price CJ, Wise RSJ, Frackowiak RSJ (1996) Demonstrating the implicit processing of visually presented words and pseudowords. Cereb Cortex 6:62–70PubMedCrossRefGoogle Scholar
  112. 112.
    Hickok G, Erhard P, Kassubek J, Helms-Tillery AK, Naeve-Velguth S et al (2000) A functional magnetic resonance imaging study of the role of left posterior superior temporal gyrus in speech production: implications for the explanation of conduction aphasia. Neurosci Lett 287:156–160PubMedCrossRefGoogle Scholar
  113. 113.
    Booth JR, Burman DD, Meyer JR, Gitelman DR, Parrish TB et al (2002) Functional anatomy of intra- and cross-modal lexical tasks. Neuroimage 16:7–22PubMedCrossRefGoogle Scholar
  114. 114.
    Indefrey P, Levelt WJM (2004) The spatial and temporal signatures of word production components. Cognition 92(1-2):101–144PubMedCrossRefGoogle Scholar
  115. 115.
    Burton MW, Locasto PC, Krebs-Noble D, Gullapalli RP (2005) A systematic investigation of the functional neuroanatomy of auditory and visual phonological processing. Neuroimage 26(3):647–661PubMedCrossRefGoogle Scholar
  116. 116.
    Callan AM, Callan DE, Masaki S (2005) When meaningless symbols become letters: neural activity change in learning new phonograms. Neuroimage 28:553–562PubMedCrossRefGoogle Scholar
  117. 117.
    Fiez JA, Raichle ME, Balota DA, Tallal P, Petersen SE (1996) PET activation of posterior temporal regions during auditory word presentation and verb generation. Cereb Cortex 6:1–10PubMedCrossRefGoogle Scholar
  118. 118.
    Warburton E, Wise RJS, Price CJ, Weiller C, Hadar U et al (1996) Noun and verb retrieval by normal subjects. Studies with PET. Brain 119:159–179PubMedCrossRefGoogle Scholar
  119. 119.
    Wise RSJ, Scott SK, Blank SC, Mummery CJ, Murphy K et al (2001) Separate neural subsystems within ‘Wernicke’s area’. Brain 124:83–95PubMedCrossRefGoogle Scholar
  120. 120.
    Baddeley AD (1986) Working memory. Oxford University Press, OxfordGoogle Scholar
  121. 121.
    Paulesu E, Frith CD, Frackowiak RSJ (1993) The neural correlates of the verbal component of working memory. Nature 362:342–345PubMedCrossRefGoogle Scholar
  122. 122.
    Hickok G, Buchsbaum B, Humphries C, Muftuler T (2003) Auditory-motor interaction revealed by fMRI: speech, music, and working memory in area Spt. J Cognit Neurosci 15(5):673–682CrossRefGoogle Scholar
  123. 123.
    Buchsbaum BR, Olsen RK, Koch P, Berman KF (2005) Human dorsal and ventral auditory streams subserve rehearsal-based and echoic processes during verbal working memory. Neuron 48(4):687–697PubMedCrossRefGoogle Scholar
  124. 124.
    Buchsbaum BR, D’Esposito M (2008) The search for the phonological store: from loop to convolution. J Cogn Neurosci 20(5):762–778PubMedCrossRefGoogle Scholar
  125. 125.
    Acheson DJ, Hamidi M, Binder JR, Postle BR (2011) A common neural substrate for language production and verbal working memory. J Cogn Neurosci 23:1358–1367PubMedCrossRefGoogle Scholar
  126. 126.
    DeWitt I, Rauschecker JP (2012) Phoneme and word recognition in the auditory ventral stream. Proc Natl Acad Sci U S A 109:E505–514PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Bréal M (1897) Essai de sémantique (science des significations). Librairie Hachette, ParisGoogle Scholar
  128. 128.
    Alexander MP, Hiltbrunner B, Fischer RS (1989) Distributed anatomy of transcortical sensory aphasia. Arch Neurol 46:885–892PubMedCrossRefGoogle Scholar
  129. 129.
    Hart J, Gordon B (1990) Delineation of single-word semantic comprehension deficits in aphasia, with anatomic correlation. Ann Neurol 27(3):226–231PubMedCrossRefGoogle Scholar
  130. 130.
    Chertkow H, Bub D, Deaudon C, Whitehead V (1997) On the status of object concepts in aphasia. Brain Lang 58:203–232PubMedCrossRefGoogle Scholar
  131. 131.
    Tranel D, Damasio H, Damasio AR (1997) A neural basis for the retrieval of conceptual knowledge. Neuropsychologia 35:1319–1327PubMedCrossRefGoogle Scholar
  132. 132.
    Gainotti G (2000) What the locus of brain lesion tells us about the nature of the cognitive defect underlying category-specific disorders: a review. Cortex 36:539–559PubMedCrossRefGoogle Scholar
  133. 133.
    Damasio H, Tranel D, Grabowski T, Adolphs R, Damasio A (2004) Neural systems behind word and concept retrieval. Cognition 92:179–229PubMedCrossRefGoogle Scholar
  134. 134.
    Dronkers NF, Wilkins DP, Van Valin RD, Redfern BB, Jaeger JJ (2004) Lesion analysis of the brain areas involved in language comprehension. Cognition 92:145–177PubMedCrossRefGoogle Scholar
  135. 135.
    Patterson K, Nestor PJ, Rogers TT (2007) Where do you know what you know? The representation of semantic knowledge in the human brain. Nat Rev Neurosci 8:976–987PubMedCrossRefGoogle Scholar
  136. 136.
    Thompson-Schill SL (2003) Neuroimaging studies of semantic memory: inferring “how” from “where”. Neuropsychologia 41:280–292PubMedCrossRefGoogle Scholar
  137. 137.
    Martin A (2007) The representation of object concepts in the brain. Annu Rev Psychol 58:25–45PubMedCrossRefGoogle Scholar
  138. 138.
    Binder JR, Desai R, Conant LL, Graves WW (2009) Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb Cortex 19:2767–2796PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Kiefer M, Pulvermüller F (2012) Conceptual representations in mind and brain: theoretical developments, current evidence and future directions. Cortex 48:805–825PubMedCrossRefGoogle Scholar
  140. 140.
    Meteyard L, Rodriguez Cuadrado S, Bahrami B, Vigliocco G (2012) Coming of age: a review of embodiment and the neuroscience of semantics. Cortex 48:788–804PubMedCrossRefGoogle Scholar
  141. 141.
    Mummery CJ, Patterson K, Hodges JR, Wise RJS (1996) Generating ‘tiger’ as an animal name or a word beginning with T: differences in brain activation. Proc R Soc Lond B 263:989–995CrossRefGoogle Scholar
  142. 142.
    Price CJ, Moore CJ, Humphreys GW, Wise RJS (1997) Segregating semantic from phonological processes during reading. J Cognit Neurosci 9(6):727–733CrossRefGoogle Scholar
  143. 143.
    Cappa SF, Perani D, Schnur T, Tettamanti M, Fazio F (1998) The effects of semantic category and knowledge type on lexical-semantic access: a PET study. Neuroimage 8(4):350–359PubMedCrossRefGoogle Scholar
  144. 144.
    Roskies AL, Fiez JA, Balota DA, Raichle ME, Petersen SE (2001) Task-dependent modulation of regions in the left inferior frontal cortex during semantic processing. J Cognit Neurosci 13(6):829–843CrossRefGoogle Scholar
  145. 145.
    Binder JR, McKiernan KA, Parsons M, Westbury CF, Possing ET et al (2003) Neural correlates of lexical access during visual word recognition. J Cognit Neurosci 15(3):372–393CrossRefGoogle Scholar
  146. 146.
    Devlin JT, Matthews PM, Rushworth MFS (2003) Semantic processing in the left inferior prefrontal cortex: a combined functional magnetic resonance imaging and transcranial magnetic stimulation study. J Cogn Neurosci 15(1):71–84PubMedCrossRefGoogle Scholar
  147. 147.
    Rissman J, Eliassen JC, Blumstein SE (2003) An event-related fMRI investigation of implicit semantic priming. J Cogn Neurosci 15(8):1160–1175PubMedCrossRefGoogle Scholar
  148. 148.
    Scott SK, Leff AP, Wise RJS (2003) Going beyond the information given: a neural system supporting semantic interpretation. Neuroimage 19:870–876PubMedCrossRefGoogle Scholar
  149. 149.
    Ischebeck A, Indefrey P, Usui N, Nose I, Hellwig F et al (2004) Reading in a regular orthography: an fMRI study investigating the role of visual familiarity. J Cognit Neurosci 16(5):727–741CrossRefGoogle Scholar
  150. 150.
    Binder JR, Westbury CF, Possing ET, McKiernan KA, Medler DA (2005) Distinct brain systems for processing concrete and abstract concepts. J Cognit Neurosci 17(6):905–917CrossRefGoogle Scholar
  151. 151.
    Binder JR, Medler DA, Desai R, Conant LL, Liebenthal E (2005) Some neurophysiological constraints on models of word naming. Neuroimage 27:677–693PubMedCrossRefGoogle Scholar
  152. 152.
    Sabsevitz DS, Medler DA, Seidenberg M, Binder JR (2005) Modulation of the semantic system by word imageability. Neuroimage 27:188–200PubMedCrossRefGoogle Scholar
  153. 153.
    Vandenbulcke M, Peeters R, Fannes K, Vandenberghe R (2006) Knowledge of visual attributes in the right hemisphere. Nat Neurosci 9(7):964–970PubMedCrossRefGoogle Scholar
  154. 154.
    Damasio H (1989) Neuroimaging contributions to the understanding of aphasia. In: Boller F, Grafman J (eds) Handbook of neuropsychology. Elsevier, Amsterdam, pp 3–46Google Scholar
  155. 155.
    Rapcsak SZ, Rubens AB (1994) Localization of lesions in transcortical aphasia. In: Kertesz A (ed) Localization and neuroimaging in neuropsychology. Academic, San Diego, pp 297–329Google Scholar
  156. 156.
    Berthier ML (1999) Transcortical aphasias. Psychology, HoveGoogle Scholar
  157. 157.
    Mummery CJ, Patterson K, Price CJ, Ashburner J, Frackowiak RS et al (2000) A voxel-based morphometry study of semantic dementia: relationship between temporal lobe atrophy and semantic memory. Ann Neurol 47:36–45PubMedCrossRefGoogle Scholar
  158. 158.
    Rosen HJ, Gorno-Tempini ML, Goldman WP et al (2002) Patterns of brain atrophy in frontotemporal dementia and semantic dementia. Neurology 58:198–208PubMedCrossRefGoogle Scholar
  159. 159.
    Davies RR, Hodges JR, Krill JJ, Patterson K, Halliday GM et al (2005) The pathological basis of semantic dementia. Brain 128:1984–1995PubMedCrossRefGoogle Scholar
  160. 160.
    Rohrer JD, Warren JD, Modat M, Ridgway GR, Douiri A et al (2009) Patterns of cortical thinning in the language variants of frontotemporal lobar degeneration. Neurology 72:1562–1569PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Mion M, Patterson K, Acosta-Cabronero J, Pengas G, Izquierdo-Garcia D et al (2010) What the left and right anterior fusiform gyri tell us about semantic memory. Brain 133:3256–3268PubMedCrossRefGoogle Scholar
  162. 162.
    Warrington EK, Shallice T (1984) Category specific semantic impairments. Brain 107:829–854PubMedCrossRefGoogle Scholar
  163. 163.
    Gonnerman LM, Andersen ES, Devlin JT, Kempler D, Seidenberg MS (1997) Double dissociation of semantic categories in Alzheimer’s disease. Brain Lang 57:254–279PubMedCrossRefGoogle Scholar
  164. 164.
    Chan AS, Salmon DP, De La Pena J (2001) Abnormal semantic network for “animals” but not “tools” in patients with Alzheimer’s disease. Cortex 37:197–217PubMedCrossRefGoogle Scholar
  165. 165.
    Fung TD, Chertkow H, Whatmough C, Murtha S, Péloquin L et al (2001) The spectrum of category effects in object and action knowledge in dementia of the Alzheimer’s type. Neuropsychology 15(3):371–379PubMedCrossRefGoogle Scholar
  166. 166.
    Alexander MP, Benson DF, Stuss DT (1989) Frontal lobes and language. Brain Lang 37:656–691PubMedCrossRefGoogle Scholar
  167. 167.
    Mazoyer BM, Tzourio N, Frak V, Syrota A, Murayama N et al (1993) The cortical representation of speech. J Cognit Neurosci 5(4):467–479CrossRefGoogle Scholar
  168. 168.
    Stowe LA, Paans AMJ, Wijers AA, Zwarts F, Mulder G et al (1999) Sentence comprehension and word repetition: a positron emission tomography investigation. Psychophysiology 36:786–801PubMedCrossRefGoogle Scholar
  169. 169.
    Friederici AD, Meyer M, von Cramon DY (2000) Auditory language comprehension: an event-related fMRI study on the processing of syntactic and lexical information. Brain Lang 74:289–300PubMedCrossRefGoogle Scholar
  170. 170.
    Vandenberghe R, Nobre AC, Price CJ (2002) The response of left temporal cortex to sentences. J Cogn Neurosci 14(4):550–560PubMedCrossRefGoogle Scholar
  171. 171.
    Humphries C, Swinney D, Love T, Hickok G (2005) Response of anterior temporal cortex to syntactic and prosodic manipulations during sentence processing. Hum Brain Mapp 26:128–138PubMedCrossRefGoogle Scholar
  172. 172.
    Humphries C, Binder JR, Medler DA, Liebenthal E (2006) Syntactic and semantic modulation of neural activity during auditory sentence comprehension. J Cognit Neurosci 18:665–679CrossRefGoogle Scholar
  173. 173.
    Pallier C, Devauchelle AD, Devauchelle AD, Dehaene S (2011) Cortical representation of the constituent structure of sentences. Proc Natl Acad Sci U S A 108(6):2522–2527PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Humphries C, Binder JR, Medler DA, Liebenthal E (2007) Time course of semantic processes during sentence comprehension: an fMRI study. Neuroimage 36(3):924–932PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Kang AM, Constable RT, Gore JC, Avrutin S (1999) An event-related fMRI study of implicit phrase-level syntactic and semantic processing. Neuroimage 10(5):98–110CrossRefGoogle Scholar
  176. 176.
    Embick D, Marantz A, Miyashita Y, O’Neil W, Sakai KL (2000) A syntactic specialization for Broca’s area. Proc Natl Acad Sci USA 97:6150–6154PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Meyer M, Friederici AD, von Cramon DY (2000) Neurocognition of auditory sentence comprehension: event related fMRi reveals sensitivity to syntactic violations and task demands. Cogn Brain Res 9:19–33CrossRefGoogle Scholar
  178. 178.
    Ni W, Constable RT, Mencl WE, Pugh KR, Fullbright RK et al (2000) An event-related neuroimaging study distinguishing form and content in sentence processing. J Cognit Neurosci 12:120–133CrossRefGoogle Scholar
  179. 179.
    Newman AJ, Pancheva R, Ozawa K, Neville HJ, Ullman MT (2001) An event-related fMRI study of syntactic and semantic violations. J Psycholinguist Res 30:339–364PubMedCrossRefGoogle Scholar
  180. 180.
    Kuperberg GR, Holcomb PJ, Sitnikova T, Greve D, Dale AM et al (2003) Distinct patterns of neural modulation during the processing of conceptual and syntactic anomalies. J Cognit Neurosci 15(2):272–293CrossRefGoogle Scholar
  181. 181.
    Caplan D, Alpert N, Waters GS (1998) Effects of syntactic structure and prepositional number on patterns of regional cerebral blood flow. J Cogn Neurosci 10(4):541–552PubMedCrossRefGoogle Scholar
  182. 182.
    Fiebach CJ, Schlesewsky M, Friederici AD (2001) Syntactic working memory and the establishment of filler-gap dependencies: insights from ERPs and fMRI. J Psycholinguist Res 30:321–338PubMedCrossRefGoogle Scholar
  183. 183.
    Ben-Shachar M, Hendler T, Kahn I, Ben-Bashat D, Grodzinsky Y (2003) The neural reality of syntactic transformations: evidence form fMRI. Psychol Sci 14:433–440PubMedCrossRefGoogle Scholar
  184. 184.
    Friederici AD, Rüschemeyer SA, Hahne A, Fiebach CJ (2003) The role of left inferior frontal gyrus and superior temporal cortex in sentence comprehension: localizing syntactic and semantic processes. Cerebr Cortex 13:170–177CrossRefGoogle Scholar
  185. 185.
    Ben-Shachar M, Palti D, Grodzinsky Y (2004) The neural correlates of syntactic movement: converging evidence from two fMRI experiments. Neuroimage 21:1320–1336PubMedCrossRefGoogle Scholar
  186. 186.
    Wartenburger I, Heekeren HR, Burchert F, Heinemann S, De Bleser R et al (2004) Neural correlates of syntactic transformations. Hum Brain Mapp 22:72–81PubMedCrossRefGoogle Scholar
  187. 187.
    Fiebach CJ, Schlesewsky M, Lohmann G (2005) Revisiting the role of Broca’s area in sentence processing: Syntactic integration versus syntactic working memory. Hum Brain Mapp 24:79–91PubMedCrossRefGoogle Scholar
  188. 188.
    Chen E, West WC, Waters G, Caplan D (2006) Determinants of BOLD signal correlates of processing object-extracted relative clauses. Cortex 42:591–604PubMedCrossRefGoogle Scholar
  189. 189.
    Caplan D, Stanczak L, Waters G (2008) Syntactic and thematic constraint effects on blood oxygenation level dependent signal correlates of comprehension of relative clauses. J Cogn Neurosci 20(4):643–656PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Just MA, Carpenter PA, Keller TA, Eddy WF, Thulborn KR (1996) Brain activation modulated by sentence comprehension. Science 274:114–116PubMedCrossRefGoogle Scholar
  191. 191.
    Stowe LA, Broere CA, Paans AM, Wijers AA, Mulder G et al (1998) Localizing components of a complex task: Sentence processing and working memory. Neuroreport 9:2995–2999PubMedCrossRefGoogle Scholar
  192. 192.
    Caplan D, Waters GS (1999) Verbal working memory and sentence comprehension. Behav Brain Sci 22(1):77–94PubMedGoogle Scholar
  193. 193.
    Keller TA, Carpenter PA, Just MA (2001) The neural bases of sentence comprehension: a fMRI examination of syntactic and lexical processing. Cereb Cortex 11:223–237PubMedCrossRefGoogle Scholar
  194. 194.
    Cooke A, Zurif EB, DeVita C, Alsop D, Koenig P et al (2002) Neural basis for sentence comprehension: grammatical and short-term memory components. Hum Brain Mapp 15:80–94PubMedCrossRefGoogle Scholar
  195. 195.
    Novick JM, Trueswell JC, Thompson-Schill SL (2005) Cognitive control and parsing: reexamining the role of Broca’s area in sentence comprehension. Cognit Affect Behav Neurosci 5(3):263–281CrossRefGoogle Scholar
  196. 196.
    Rogalsky C, Hickok G (2011) The role of Broca’s area in sentence comprehension. J Cogn Neurosci 23(7):1664–1680PubMedCrossRefGoogle Scholar
  197. 197.
    Caplan D, Waters G (2013) Memory mechanisms supporting syntactic comprehension. Psychon Bull Rev 20(2):243–268PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Caplan D (2001) Functional neuroimaging studies of syntactic processing. J Psycholinguist Res 30(3):297–320PubMedCrossRefGoogle Scholar
  199. 199.
    Friederici AD, Kotz SA (2003) The brain basis of syntactic processes: functional imaging and lesion studies. Neuroimage 20:S8–S17PubMedCrossRefGoogle Scholar
  200. 200.
    Martin RC (2003) Language processing: functional organization and neuroanatomical basis. Annu Rev Psychol 54:55–89PubMedCrossRefGoogle Scholar
  201. 201.
    Grodzinsky Y, Friederici AD (2006) Neuroimaging of syntax and syntactic processing. Curr Opin Neurobiol 16:240–246PubMedCrossRefGoogle Scholar
  202. 202.
    Bornkessel-Schlesewsky I, Schlesewsky M (2013) Reconciling time, space and function: a new dorsal-ventral stream model of sentence comprehension. Brain Lang 125(1):60–76PubMedCrossRefGoogle Scholar
  203. 203.
    Badre D, Poldrack RA, Pare-Blagoev EJ, Insler RZ, Wagner AD (2005) Dissociable controlled retrieval and generalized selection mechanisms in ventrolateral prefrontal cortex. Neuron 47:907–918PubMedCrossRefGoogle Scholar
  204. 204.
    Scott SK, Blank C, Rosen S, Wise RJS (2000) Identification of a pathway for intelligible speech in the left temporal lobe. Brain 123:2400–2406PubMedCrossRefGoogle Scholar
  205. 205.
    Davis MH, Johnsrude IS (2003) Hierarchical processing in spoken language comprehension. J Neurosci 23(8):3423–3431PubMedGoogle Scholar
  206. 206.
    Specht K, Reul J (2003) Functional segregation of the temporal lobes into highly differentiated subsystems for auditory perception: an auditory rapid event-related fMRI task. Neuroimage 20:1944–1954PubMedCrossRefGoogle Scholar
  207. 207.
    Uppenkamp S, Johnsrude IS, Norris D, Marslen-Wilson W, Patterson RD (2006) Locating the initial stages of speech-sound processing in human temporal cortex. Neuroimage 31:1284–1296PubMedCrossRefGoogle Scholar
  208. 208.
    Binder JR, Swanson SJ, Hammeke TA, Sabsevitz DS (2008) A comparison of five fMRI protocols for mapping speech comprehension systems. Epilepsia 49(12):1980–1997PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Thompson-Schill SL, Aguirre GK, D’Esposito M, Farah MJ (1997) Role of left inferior prefrontal cortex in retrieval of semantic knowledge: a reevaluation. Proc Natl Acad Sci U S A 94:14792–14797PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Thompson-Schill SL, D’Esposito M, Kan IP (1999) Effects of repetition and competition on activity in left prefrontal cortex during word generation. Neuron 23:513–522PubMedCrossRefGoogle Scholar
  211. 211.
    Wise R, Chollet F, Hadar U, Friston K, Hoffner E et al (1991) Distribution of cortical neural networks involved in word comprehension and word retrieval. Brain 114:1803–1817PubMedCrossRefGoogle Scholar
  212. 212.
    Price CJ, Wise RJS, Warburton EA, Moore CJ, Howard D et al (1996) Hearing and saying. The functional neuro-anatomy of auditory word processing. Brain 119:919–931PubMedCrossRefGoogle Scholar
  213. 213.
    Price C, Wise R, Ramsay S, Friston K, Howard D et al (1992) Regional response differences within the human auditory cortex when listening to words. Neurosci Lett 146:179–182PubMedCrossRefGoogle Scholar
  214. 214.
    Binder JR, Rao SM, Hammeke TA, Frost JA, Bandettini PA et al (1994) Effects of stimulus rate on signal response during functional magnetic resonance imaging of auditory cortex. Cogn Brain Res 2:31–38CrossRefGoogle Scholar
  215. 215.
    Lehéricy S, Cohen L, Bazin B, Samson S, Giacomini E et al (2000) Functional MR evaluation of temporal and frontal language dominance compared with the Wada test. Neurology 54:1625–1633PubMedCrossRefGoogle Scholar
  216. 216.
    Humphries C, Willard K, Buchsbaum B, Hickok G (2001) Role of anterior temporal cortex in auditory sentence comprehension: an fMRI study. Neuroreport 12:1749–1752PubMedCrossRefGoogle Scholar
  217. 217.
    Crinion JT, Lambon-Ralph MA, Warburton EA, Howard D, Wise RJS (2003) Temporal lobe regions engaged during normal speech comprehension. Brain 126:1193–1201PubMedCrossRefGoogle Scholar
  218. 218.
    Spitsyna G, Warren JE, Scott SK, Turkheimer FE, Wise RJS (2006) Converging language streams in the human temporal lobe. J Neurosci 26(28):7328–7336PubMedCrossRefGoogle Scholar
  219. 219.
    Awad M, Warren JE, Scott SK, Turkheimer FE, Wise RJS (2007) A common system for the comprehension and production of narrative speech. J Neurosci 27(43):11455–11464PubMedCrossRefGoogle Scholar
  220. 220.
    Eulitz C, Elbert T, Bartenstein P, Weiller C, Müller SP et al (1994) Comparison of magnetic and metabolic brain activity during a verb generation task. NeuroReport 6:97–100PubMedCrossRefGoogle Scholar
  221. 221.
    Ojemann JG, Buckner RL, Akbudak E, Snyder AZ, Ollinger JM et al (1998) Functional MRI studies of word-stem completion: reliability across laboratories and comparison to blood flow imaging with PET. Hum Brain Mapp 6:203–215PubMedCrossRefGoogle Scholar
  222. 222.
    Yetkin FZ, Swanson S, Fischer M, Akansel G, Morris G et al (1998) Functional MR of frontal lobe activation: comparison with Wada language results. Am J Neuroradiol 19:1095–1098PubMedGoogle Scholar
  223. 223.
    Benson RR, FitzGerald DB, LeSeuer LL, Kennedy DN, Kwong KK et al (1999) Language dominance determined by whole brain functional MRI in patients with brain lesions. Neurology 52:798–809PubMedCrossRefGoogle Scholar
  224. 224.
    Palmer ED, Rosen HJ, Ojemann JG, Buckner RL, Kelley WM et al (2001) An event-related fMRI study of overt and covert word stem completion. Neuroimage 14:182–193PubMedCrossRefGoogle Scholar
  225. 225.
    Liégois F, Connelly A, Salmond CH, Gadian DG, Vargha-Khadem F et al (2002) A direct test for lateralization of language activation using fMRI: comparison with invasive assessments in children with epilepsy. Neuroimage 17:1861–1867CrossRefGoogle Scholar
  226. 226.
    Raichle ME, Fiez JA, Videen TO, MacLeod AM, Pardo JV et al (1994) Practice-related changes in human brain functional anatomy during nonmotor learning. Cereb Cortex 4(1):8–26PubMedCrossRefGoogle Scholar
  227. 227.
    Petersen SE, Fox PT, Posner MI, Mintun M, Raichle ME (1988) Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature 331:585–589PubMedCrossRefGoogle Scholar
  228. 228.
    Malach R, Reppas JB, Benson RR, Kwong KK, Jiang H et al (1995) Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc Natl Acad Sci USA 92:8135–8139PubMedPubMedCentralCrossRefGoogle Scholar
  229. 229.
    Kanwisher N, Woods R, Iacoboni M, Mazziotta J (1996) A locus in human extrastriate cortex for visual shape analysis. J Cognit Neurosci 91:133–142Google Scholar
  230. 230.
    Grill-Spector K, Kushnir T, Edelman S, Avidian-Carmel G, Itzchak Y et al (1999) Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron 24:187–203PubMedCrossRefGoogle Scholar
  231. 231.
    Martin A, Wiggs CL, Ungerleider LG, Haxby JV (1996) Neural correlates of category-specific knowledge. Nature 379(6566):649–652PubMedCrossRefGoogle Scholar
  232. 232.
    Price CJ, Moore CJ, Humphreys GW, Frackowiak RSJ, Friston KJ (1996) The neural regions sustaining object recognition and naming. Proc Roy Soc Lond B 263:1501–1507CrossRefGoogle Scholar
  233. 233.
    Zelkowicz BJ, Herbster AN, Nebes RD, Mintun MA, Becker JT (1998) An examination of regional cerebral blood flow during object naming tasks. J Int Neuropsychol Soc 4:160–166PubMedCrossRefGoogle Scholar
  234. 234.
    Murtha S, Chertkow H, Beauregard M, Evans A (1999) The neural substrate of picture naming. J Cognit Neurosci 11(4):399–423CrossRefGoogle Scholar
  235. 235.
    Price CJ, Devlin JT, Moore CJ, Morton C, Laird AR (2005) Meta-analyses of object naming: effect of baseline. Hum Brain Mapp 25:70–82PubMedCrossRefGoogle Scholar
  236. 236.
    Kiasawa M, Inoue C, Kawasaki T, Tokoro T, Ishii K et al (1996) Functional neuroanatomy of object naming: a PET study. Graefes Arch Clin Exp Ophthalmol 234:110–115CrossRefGoogle Scholar
  237. 237.
    Vandenberghe R, Price C, Wise R, Josephs O, Frackowiak RSJ (1996) Functional anatomy of a common semantic system for words and pictures. Nature 383:254–256PubMedCrossRefGoogle Scholar
  238. 238.
    Carpentier A, Pugh KR, Westerveld M, Studholme C, Skrinjar O et al (2001) Functional MRI of language processing: dependence on input modality and temporal lobe epilepsy. Epilepsia 42:1241–1254PubMedCrossRefGoogle Scholar
  239. 239.
    Devlin JT, Russell RP, Davis MH, Price CJ, Moss HE et al (2002) Is there an anatomical basis for category-specificity? Semantic memory studies with PET and fMRI. Neuropsychologia 40:54–75PubMedCrossRefGoogle Scholar
  240. 240.
    Xu B, Grafman J, Gaillard WD, Spanaki M, Ishii K et al (2002) Neuroimaging reveals automatic speech coding during perception of written word meaning. Neuroimage 17(2):859–870PubMedCrossRefGoogle Scholar
  241. 241.
    Mummery CJ, Patterson K, Hodges JR, Price CJ (1998) Functional neuroanatomy of the semantic system: divisible by what? J Cogn Neurosci 10(6):766–777PubMedCrossRefGoogle Scholar
  242. 242.
    Miceli G, Turriziani P, Caltagirone C, Capasso R, Tomaiuolo F et al (2002) The neural correlates of grammatical gender: an fMRI investigation. J Cognit Neurosci 14:618–628CrossRefGoogle Scholar
  243. 243.
    Bavelier D, Corina D, Jezzard P, Padmanabhan S, Clark VP et al (1997) Sentence reading: a functional MRI study at 4 tesla. J Cognit Neurosci 9(5):664–686CrossRefGoogle Scholar
  244. 244.
    Herbster AN, Mintun MA, Nebes RD, Becker JT (1997) Regional cerebral blood flow during word and nonword reading. Hum Brain Mapp 5:84–92PubMedCrossRefGoogle Scholar
  245. 245.
    Indefrey P, Kleinschmidt A, Merboldt KD, Krüger G, Brown C et al (1997) Equivalent responses to lexical and nonlexical visual stimuli in occipital cortex: a functional magnetic resonance imaging study. Neuroimage 5:78–81PubMedCrossRefGoogle Scholar
  246. 246.
    Chee MW, Caplan D, Soon CS, Sriram N, Tan EWL et al (1993) Processing of visually presented sentences in Mandarin and English studied with fMRI. Neuron 23:127–137CrossRefGoogle Scholar
  247. 247.
    Démonet JF, Wise R, Frackowiak RSJ (1993) Language functions explored in normal subjects by positron emission tomography: a critical review. Hum Brain Mapp 1(1):39–47CrossRefGoogle Scholar
  248. 248.
    Fiez JA (1997) Phonology, semantics and the role of the left inferior prefrontal cortex. Hum Brain Mapp 5:79–83PubMedCrossRefGoogle Scholar
  249. 249.
    Poldrack RA, Wagner AD, Prull MW, Desmond JE, Glover GH et al (1999) Functional specialization for semantic and phonological processing in the left inferior prefrontal cortex. Neuroimage 10:15–35PubMedCrossRefGoogle Scholar
  250. 250.
    Gold BT, Buckner RL (2002) Common prefrontal regions coactivate with dissociable posterior regions during controlled semantic and phonological tasks. Neuron 35:803–812PubMedCrossRefGoogle Scholar
  251. 251.
    Henson RNA, Price CJ, Rugg MD, Turner R, Friston KJ (2002) Detecting latency differences in event-related BOLD responses: application to words versus nonwords and initial versus repeated face presentations. Neuroimage 15(1):83–97PubMedCrossRefGoogle Scholar
  252. 252.
    Mechelli A, Gorno-Tempini ML, Price CJ (2003) Neuroimaging studies of word and pseudoword reading: consistencies, inconsistencies, and limitations. J Cogn Neurosci 15(2):260–271PubMedCrossRefGoogle Scholar
  253. 253.
    Braver TS, Cohen JD, Nystrom LE, Jonides J, Smith EE et al (1997) A parametric study of prefrontal cortex involvement in human working memory. Neuroimage 5:49–62PubMedCrossRefGoogle Scholar
  254. 254.
    Honey GD, Bullmore ET, Sharma T (2000) Prolonged reaction time to a verbal working memory task predicts increased power of posterior parietal cortical activation. Neuroimage 12(5):495–503PubMedCrossRefGoogle Scholar
  255. 255.
    Adler CM, Sax KW, Holland SK, Schmithorst V, Rosenberg L et al (2001) Changes in neuronal activation with increasing attention demand in healthy volunteers: An fMRI study. Synapse 42:266–272PubMedCrossRefGoogle Scholar
  256. 256.
    Braver TS, Barch DM, Gray JR, Molfese DL, Snyder A (2001) Anterior cingulate cortex and response conflict: effects of frequency, inhibition and errors. Cereb Cortex 11:825–836PubMedCrossRefGoogle Scholar
  257. 257.
    Ullsperger M, Von Cramon DY (2001) Subprocesses of performance monitoring: a dissociation of error processing and response competition revealed by event-related fMRI and ERPs. Neuroimage 14:1387–1401PubMedCrossRefGoogle Scholar
  258. 258.
    Binder JR, Liebenthal E, Possing ET, Medler DA, Ward BD (2004) Neural correlates of sensory and decision processes in auditory object identification. Nat Neurosci 7(3):295–301PubMedCrossRefGoogle Scholar
  259. 259.
    Desai R, Conant LL, Waldron E, Binder JR (2006) FMRI of past tense processing: the effects of phonological complexity and task difficulty. J Cognit Neurosci 18(2):278–297CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Language Imaging Laboratory, Departments of Neurology and BiophysicsThe Medical College of WisconsinMilwaukeeUSA

Personalised recommendations