Advertisement

Functional MRI: Applications in Cognitive Neuroscience

  • Mark D’EspositoEmail author
  • Andrew Kayser
  • Anthony Chen
Protocol
Part of the Neuromethods book series (NM, volume 119)

Abstract

Neuroimaging, in many respects, revolutionized the study of cognitive neuroscience, the discipline that attempts to determine the neural mechanisms underlying cognitive processes. Early studies of brain–behavior relationships relied on a precise neurological exam as the basis for hypothesizing the site of brain damage that was responsible for a given behavioral syndrome. The advent of structural brain imaging, first with computerized tomography and later with magnetic resonance imaging, paved the way for more precise anatomical localization of the cognitive deficits that manifest after brain injury. Functional neuroimaging, broadly defined as techniques that provide measures of brain activity, further increased our ability to study the neural basis of behavior. Functional MRI (fMRI), in particular, is an extremely powerful technique that affords excellent spatial and temporal resolution. This chapter focuses on the principles underlying fMRI as a cognitive neuroscience tool for exploring brain–behavior relationships.

Key words

Functional MRI Cognitive neuroscience Experimental design Statistics 

References

  1. 1.
    Broca P (1861) Remarques sur le siege de la faculte du langage articule suivies d’une observation d’amphemie (perte de al parole). Bull Mem Soc Anat Paris 36:330–357Google Scholar
  2. 2.
    Buckner RL, Raichle ME, Petersen SE (1995) Dissociation of human prefrontal cortical areas across different speech production tasks and gender groups. J Neurophysiol 74(5):2163–2173PubMedGoogle Scholar
  3. 3.
    Sarter M, Bernston G, Cacioppo J (1996) Brain imaging and cognitive neuroscience: toward strong inference in attributing function to structure. Am Psychol 51:13–21PubMedCrossRefGoogle Scholar
  4. 4.
    Gaffan D, Gaffan EA (1991) Amnesia in man following transection of the fornix: a review. Brain 114:2611–2618PubMedCrossRefGoogle Scholar
  5. 5.
    Feeney DM, Baron JC (1986) Diaschisis. Stroke 17(5):817–830PubMedCrossRefGoogle Scholar
  6. 6.
    Carrera E, Tononi G (2014) Diaschisis: past, present, future. Brain 137:2408–2422PubMedCrossRefGoogle Scholar
  7. 7.
    Fuster JM, Alexander GE (1971) Neuron activity related to short-term memory. Science 173:652–654PubMedCrossRefGoogle Scholar
  8. 8.
    Funahashi S, Bruce CJ, Goldman-Rakic PS (1989) Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 61:331–349PubMedGoogle Scholar
  9. 9.
    Funahashi S, Bruce CJ, Goldman-Rakic PS (1993) Dorsolateral prefrontal lesions and oculomotor delayed-response performance: evidence for mnemonic “scotomas”. J Neurosci 13:1479–1497PubMedGoogle Scholar
  10. 10.
    Watanabe T, Niki H (1985) Hippocampal unit activity and delayed response in the monkey. Brain Res 325(1–2):241–254PubMedCrossRefGoogle Scholar
  11. 11.
    Cahusac PM, Miyashita Y, Rolls ET (1989) Responses of hippocampal formation neurons in the monkey related to delayed spatial response and object-place memory tasks. Behav Brain Res 33(3):229–240PubMedCrossRefGoogle Scholar
  12. 12.
    Alvarez P, Zola-Morgan S, Squire LR (1994) The animal model of human amnesia: long-term memory impaired and short-term memory intact. Proc Natl Acad Sci U S A 91(12):5637–5641PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Corkin S (1984) Lasting consequences of bilateral medial temporal lobectomy: clinical course and experimental findings in H.M. Semin Neurol 4:249–259CrossRefGoogle Scholar
  14. 14.
    Ranganath C, D’Esposito M (2001) Medial temporal lobe activity associated with active maintenance of novel information. Neuron 31(5):865–873PubMedCrossRefGoogle Scholar
  15. 15.
    D’Esposito M (2010) Why methods matter in the study of the biological basis of the mind: a behavioral neurologist’s perspective. In: Reuter-Lorenz PA, Baynes K, Mangun GR, Phelps EA (eds) The cognitive neursocience of mind: a tribute to Michael Gazzaniga. MIT Press, Cambridge, MAGoogle Scholar
  16. 16.
    Druzgal TJ, D’Esposito M (2001) Activity in fusiform face area modulated as a function of working memory load. Brain Res Cogn Brain Res 10(3):355–364PubMedCrossRefGoogle Scholar
  17. 17.
    Henson R (2006) Forward inference using functional neuroimaging: dissociations versus associations. Trends Cogn Sci 10(2):64–69PubMedCrossRefGoogle Scholar
  18. 18.
    Cohen MS, Kosslyn SM, Breiter HC et al (1996) Changes in cortical activity during mental rotation: a mapping study using functional MRI. Brain 119:89–100PubMedCrossRefGoogle Scholar
  19. 19.
    D’Esposito M, Ballard D, Aguirre GK, Zarahn E (1998) Human prefrontal cortex is not specific for working memory: a functional MRI study. Neuroimage 8(3):274–282PubMedCrossRefGoogle Scholar
  20. 20.
    Poldrack RA (2006) Can cognitive processes be inferred from neuroimaging data? Trends Cogn Sci 10(2):59–63PubMedCrossRefGoogle Scholar
  21. 21.
    Grasby PM (2002) Imaging the neurochemical brain in health and disease. Clin Med 2(1):67–73CrossRefGoogle Scholar
  22. 22.
    Landau SM, Lal R, O'Neil JP, Baker S, Jagust WJ (2009) Striatal dopamine and working memory. Cereb Cortex 19(2):445–454PubMedCrossRefGoogle Scholar
  23. 23.
    Blakemore SJ (2012) Imaging brain development: the adolescent brain. Neuroimage 61(2):397–406PubMedCrossRefGoogle Scholar
  24. 24.
    Ritter P, Villringer A (2006) Simultaneous EEG-fMRI. Neurosci Biobehav Rev 30(6):823–838PubMedCrossRefGoogle Scholar
  25. 25.
    Jorge J, van der Zwaag W, Figueiredo P (2013) EEG-fMRI integration for the study of human brain function. Neuroimage 102:24–34PubMedCrossRefGoogle Scholar
  26. 26.
    Sadaghiani S, Scheeringa R, Lehongre K, Morillon B, Giraud A-L, Kleinschmidt A (2010) Intrinsic connectivity networks, alpha oscillations, and tonic alertness: a simultaneous electroencephalography/functional magnetic resonance imaging study. J Neurosci 30(30):10243–10250PubMedCrossRefGoogle Scholar
  27. 27.
    Sadeh B, Podlipsky I, Zhdanov A, Yovel G (2010) Event-related potential and functional MRI measures of face-selectivity are highly correlated: a simultaneous ERP-fMRI investigation. Hum Brain Mapp 31(10):1490–1501PubMedCrossRefGoogle Scholar
  28. 28.
    Becker R, Reinacher M, Freyer F, Villringer A, Ritter P (2011) How ongoing neuronal oscillations account for evoked fMRI variability. J Neurosci 31(30):11016–11027PubMedCrossRefGoogle Scholar
  29. 29.
    Bergmann TO, Mölle M, Diedrichs J, Born J, Siebner HR (2012) Sleep spindle-related reactivation of category-specific cortical regions after learning face-scene associations. Neuroimage 59(3):2733–2742PubMedCrossRefGoogle Scholar
  30. 30.
    Mantini D, Perrucci MG, Cugini S, Ferretti A, Romani GL, Del Gratta C (2007) Complete artifact removal for EEG recorded during continuous fMRI using independent component analysis. Neuroimage 34:598–607PubMedCrossRefGoogle Scholar
  31. 31.
    Debener S, Strobel A, Sorger B et al (2007) Improved quality of auditory event-related potentials recorded simultaneously with 3-T fMRI: Removal of the ballistocardiogram artefact. Neuroimage 34:587–597PubMedCrossRefGoogle Scholar
  32. 32.
    Moosmann M, Schönfelder VH, Specht K, Scheeringa R, Nordby H, Hugdahl K (2009) Realignment parameter-informed artefact correction for simultaneous EEG-fMRI recordings. Neuroimage 45(4):1144–1150PubMedCrossRefGoogle Scholar
  33. 33.
    Mullinger KJ, Yan WX, Bowtell R (2011) Reducing the gradient artefact in simultaneous EEG-fMRI by adjusting the subject’s axial position. Neuroimage 54:1942–1950PubMedCrossRefGoogle Scholar
  34. 34.
    Neuner I, Arrubla J, Felder J, Shah NJ (2014) Simultaneous EEG-fMRI acquisition at low, high and ultra-high magnetic fields up to 9.4T: perspectives and challenges. Neuroimage 102(P1):71–79PubMedCrossRefGoogle Scholar
  35. 35.
    Feredoes E, Heinen K, Weiskopf N, Ruff C, Driver J (2011) Causal evidence for frontal involvement in memory target maintenance by posterior brain areas during distracter interference of visual working memory. Proc Natl Acad Sci U S A 108(42):17510–17515PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Ruff CC, Blankenburg F, Bjoertomt O, Bestmann S, Freeman E, Haynes J, Driver J (2006) Concurrent TMS-fMRI and psychophysics reveal frontal influences on human retinotopic visual cortex. Curr Biol 16(15):1479–1488PubMedCrossRefGoogle Scholar
  37. 37.
    Chen AC, Oathes DJ, Chang C, Bradley T, Zhou Z-W, Williams LM, Etkin A (2013) Causal interactions between fronto-parietal central executive and default-mode networks in humans. Proc Natl Acad Sci U S A 110(49):19944–19949PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Yau JM, Hua J, Liao DA, Desmond JE (2013) Efficient and robust identification of cortical targets in concurrent TMS-fMRI experiments. NeuroImage 76:134–144PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Gnadt JW, Andersen RA (1988) Memory related motor planning activity in posterior parietal cortex of macaque. Exp Brain Res 70:216–220PubMedGoogle Scholar
  40. 40.
    Aguirre GK, Zarahn E, D’Esposito M (1998) The variability of human, BOLD hemodynamic responses. Neuroimage 8(4):360–369PubMedCrossRefGoogle Scholar
  41. 41.
    Handwerker DA, Ollinger JM, D’Esposito M (2004) Variation of BOLD hemodynamic responses across brain regions and subjects and their effects on statistical analyses. NeuroImage 21:1639–1651PubMedCrossRefGoogle Scholar
  42. 42.
    Boynton GM, Engel SA, Glover GH, Heeger DJ (1996) Linear systems analysis of functional magnetic resonance imaging in human V1. J Neurosci 16:4207–4221PubMedGoogle Scholar
  43. 43.
    Kim SG, Richter W, Ugurbil K (1997) Limitations of temporal resolution in fMRI. Magn Reson Med 37:631–636PubMedCrossRefGoogle Scholar
  44. 44.
    Savoy RL, Bandettini PA, O’Craven KM et al (1995) Pushing the temporal resolution of fMRI: studies of very brief stimuli, onset of variability and asynchrony, and stimulu-correlated changes in noise. Proc Soc Magn Reson Med 3:450Google Scholar
  45. 45.
    Zarahn E, Aguirre GK, D’Esposito M (1997) A trial-based experimental design for functional MRI. NeuroImage 6:122–138PubMedCrossRefGoogle Scholar
  46. 46.
    Burock MA, Buckner RL, Woldorff MG, Rosen BR, Dale AM (1998) Randomized event-related experimental designs allow for extremely rapid presentation rates using functional MRI. Neuroreport 9(16):3735–3739PubMedCrossRefGoogle Scholar
  47. 47.
    Clark VP, Maisog JM, Haxby JV (1997) fMRI studies of visual perception and recognition using a random stimulus design. Soc Neurosci Abstr 23:301Google Scholar
  48. 48.
    Dale AM, Buckner RL (1997) Selective averaging of rapidly presented individual trials using fMRI. Hum Brain Mapp 5:1–12CrossRefGoogle Scholar
  49. 49.
    Miezin FM, Maccotta L, Ollinger JM, Petersen SE, Buckner RL (2000) Characterizing the hemodynamic response: effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing. Neuroimage 11(6 Pt 1):735–759PubMedCrossRefGoogle Scholar
  50. 50.
    D’Esposito M, Zarahn E, Aguirre GK (1999) Event-related functional MRI: implications for cognitive psychology. Psychol Bull 125:155–164PubMedCrossRefGoogle Scholar
  51. 51.
    Besle J, Sanchez-Panchuelo R, Bowtell R, Francis S, Schluppeck D (2014) Event-related fMRI at 7 T reveals overlapping cortical representations for adjacent fingertips in S1 of individual subjects. Hum Brain Mapp 35:2027–2043PubMedCrossRefGoogle Scholar
  52. 52.
    Ehses P, Bause J, Shajan G, Scheffler K. Efficient generation of T2*-weighted contrast by interslice echo-shifting for human functional and anatomacil imaging at 9.4 Tesla. Magn Reson Med (epub ahead of print)Google Scholar
  53. 53.
    Budde J, Shajan G, Zaitsev M, Scheffler K, Functional PR, MRI (2014) Human subjects with gradient-echo and spin-echo EPI at 9.4 T. Magn Reson Med 2014(71):209–218CrossRefGoogle Scholar
  54. 54.
    Malonek D, Grinvald A (1996) Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping. Science 272:551–554PubMedCrossRefGoogle Scholar
  55. 55.
    Kim SG, Duong TQ (2002) Mapping cortical columnar structures using fMRI. Physiol Behav 77(4–5):641–644PubMedCrossRefGoogle Scholar
  56. 56.
    Grill-Spector K, Malach R (2001) fMR-adaptation: a tool for studying the functional properties of human cortical neurons. Acta Psychol (Amst) 107(1–3):293–321CrossRefGoogle Scholar
  57. 57.
    Grill-Spector K, Kushnir T, Edelman S, Avidan G, Itzchak Y, Malach R (1999) Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron 24(1):187–203PubMedCrossRefGoogle Scholar
  58. 58.
    Posner MI, Petersen SE, Fox PT, Raichle ME (1988) Localization of cognitive operations in the human brain. Science 240:1627–1631PubMedCrossRefGoogle Scholar
  59. 59.
    Sternberg S (1969) The discovery of processing stages: extensions of Donders’ method. Acta Psychol 30:276–315CrossRefGoogle Scholar
  60. 60.
    Petersen SE, Fox PT, Posner MI, Mintun M, Raichle ME (1988) Positron emission tomographic studies of the cortical anatomy of single word processing. Nature 331:585–589PubMedCrossRefGoogle Scholar
  61. 61.
    Fuster J (1997) The prefrontal cortex: anatomy, physiology, and neuropsychology of the frontal lobes, 3rd edn. Raven, New YorkGoogle Scholar
  62. 62.
    Jonides J, Smith EE, Koeppe RA, Awh E, Minoshima S, Mintun MA (1993) Spatial working memory in humans as revealed by PET. Nature 363:623–625PubMedCrossRefGoogle Scholar
  63. 63.
    Sreenivasan KK, Curtis CE, D’Esposito M (2014) Revising the role of persistent neural activity in working memory. Trends Cogn Sci 18:82–89PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Attwell D, Iadecola C (2002) The neural basis of functional brain imaging signals. Trends Neurosci 25(12):621–625PubMedCrossRefGoogle Scholar
  65. 65.
    Heeger DJ, Ress D (2002) What does fMRI tell us about neuronal activity? Nat Rev Neurosci 3(2):142–151PubMedCrossRefGoogle Scholar
  66. 66.
    Friston KJ, Josephs O, Rees G, Turner R (1998) Nonlinear event-related responses in fMRI. Magn Reson Med 39(1):41–52PubMedCrossRefGoogle Scholar
  67. 67.
    Glover GH (1999) Deconvolution of impulse response in event-related BOLD fMRI. Neuroimage 9(4):416–429PubMedCrossRefGoogle Scholar
  68. 68.
    Miller KL, Luh WM, Liu TT et al (2001) Nonlinear temporal dynamics of the cerebral blood flow response. Hum Brain Mapp 13(1):1–12PubMedCrossRefGoogle Scholar
  69. 69.
    Vazquez AL, Noll DC (1998) Nonlinear aspects of the BOLD response in functional MRI. NeuroImage 7(2):108–118PubMedCrossRefGoogle Scholar
  70. 70.
    D’Esposito M, Zarahn E, Aguirre GK, Rypma B (1999) The effect of normal aging on the coupling of neural activity to the bold hemodynamic response. Neuroimage 10(1):6–14PubMedCrossRefGoogle Scholar
  71. 71.
    Rosen BR, Buckner RL, Dale AM (1998) Event-related functional MRI: past, present, and future. Proc Natl Acad Sci U S A 95(3):773–780PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Donaldson DI, Petersen SE, Ollinger JM, Buckner RL (2001) Dissociating state and item components of recognition memory using fMRI. Neuroimage 13(1):129–142PubMedCrossRefGoogle Scholar
  73. 73.
    Mitchell KJ, Johnson MK, Raye CL, D’Esposito M (2000) fMRI evidence of age-related hippocampal dysfunction in feature binding in working memory. Brain Res Cogn Brain Res 10(1–2):197–206PubMedCrossRefGoogle Scholar
  74. 74.
    Keppel G, Zedeck S (1989) Data analysis for research design. W.H. Freeman, New YorkGoogle Scholar
  75. 75.
    Worsley KJ, Friston KJ (1995) Analysis of fMRI time-series revisited – again. Neuroimage 2:173–182PubMedCrossRefGoogle Scholar
  76. 76.
    Nichols T, Hayasaka S (2003) Controlling the familywise error rate in functional neuroimaging: a comparative review. Stat Methods Med Res 12(5):419–446PubMedCrossRefGoogle Scholar
  77. 77.
    Eklund A, Andersson M, Josephson C, Johannesson M, Knutsson H (2012) Does parametric fMRI analysis with SPM yield valid results? An empirical study of 1484 rest datasets. Neuroimage 61(3):565–578PubMedCrossRefGoogle Scholar
  78. 78.
    Zarahn E, Aguirre GK, D’Esposito M (1997) Empirical analyses of BOLD fMRI statistics. I Spatially unsmoothed data collected under null-hypothesis conditions. NeuroImage 5:179–197PubMedCrossRefGoogle Scholar
  79. 79.
    Aguirre GK, Zarahn E, D’Esposito M (1997) Empirical analyses of BOLD fMRI statistics. II Spatially smoothed data collected under null-hypothesis and experimental conditions. NeuroImage 5:199–212PubMedCrossRefGoogle Scholar
  80. 80.
    D’Esposito M, Ballard D, Zarahn E, Aguirre GK (2000) The role of prefrontal cortex in sensory memory and motor preparation: an event-related fMRI study. Neuroimage 11(5 Pt 1):400–408PubMedCrossRefGoogle Scholar
  81. 81.
    Zarahn E, Slifstein M (2001) A reference effect approach for power analysis in fMRI. Neuroimage 14(3):768–779PubMedCrossRefGoogle Scholar
  82. 82.
    Van Horn JD, Ellmore TM, Esposito G, Berman KF (1998) Mapping voxel-based statistical power on parametric images. Neuroimage 7(2):97–107PubMedCrossRefGoogle Scholar
  83. 83.
    Aguirre GK, D’Esposito M (1999) Experimental design for brain fMRI. In: Moonen CTW, Bandettini PA (eds) Functional MRI. Springer, Berlin, pp 369–380Google Scholar
  84. 84.
    Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412(6843):150–157PubMedCrossRefGoogle Scholar
  85. 85.
    Farkas E, Luiten PG (2001) Cerebral microvascular pathology in aging and Alzheimer’s disease. Prog Neurobiol 64(6):575–611PubMedCrossRefGoogle Scholar
  86. 86.
    Fang HCH (1976) Observations on aging characteristics of cerebral blood vessels, macroscopic and microscopic features. In: Gerson S, Terry RD (eds) Neurobiology of aging. Raven, New YorkGoogle Scholar
  87. 87.
    Bentourkia M, Bol A, Ivanoiu A et al (2000) Comparison of regional cerebral blood flow and glucose metabolism in the normal brain: effect of aging. J Neurol Sci 181(1–2):19–28PubMedCrossRefGoogle Scholar
  88. 88.
    Schultz SK, O’Leary DS, Boles Ponto LL, Watkins GL, Hichwa RD, Andreasen NC (1999) Age-related changes in regional cerebral blood flow among young to mid-life adults. Neuroreport 10(12):2493–2496PubMedCrossRefGoogle Scholar
  89. 89.
    Yamamoto M, Meyer JS, Sakai F, Yamaguchi F (1980) Aging and cerebral vasodilator responses to hypercarbia: responses in normal aging and in persons with risk factors for stroke. Arch Neurol 37(8):489–496PubMedCrossRefGoogle Scholar
  90. 90.
    Yamaguchi T, Kanno I, Uemura K et al (1986) Reduction in regional cerebral rate of oxygen during human aging. Stroke 17:1220–1228PubMedCrossRefGoogle Scholar
  91. 91.
    Takada H, Nagata K, Hirata Y et al (1992) Age-related decline of cerebral oxygen metabolism in normal population detected with positron emission tomography. Neurol Res 14(2 Suppl):128–131PubMedCrossRefGoogle Scholar
  92. 92.
    Claus JJ, Breteler MM, Hasan D et al (1998) Regional cerebral blood flow and cerebrovascular risk factors in the elderly population. Neurobiol Aging 19(1):57–64PubMedCrossRefGoogle Scholar
  93. 93.
    Cunnington R, Iansek R, Bradshaw JL, Phillips JG (1995) Movement-related potentials in Parkinson’s disease. Presence and predictability of temporal and spatial cues. Brain 118(Pt 4):935–950PubMedCrossRefGoogle Scholar
  94. 94.
    Buckner RL, Snyder AZ, Sanders AL, Raichle ME, Morris JC (2000) Functional brain imaging of young, nondemented, and demented older adults. J Cogn Neurosci 12(Suppl 2):24–34PubMedCrossRefGoogle Scholar
  95. 95.
    Huettel SA, Singerman JD, McCarthy G (2001) The effects of aging upon the hemodynamic response measured by functional MRI. Neuroimage 13(1):161–175PubMedCrossRefGoogle Scholar
  96. 96.
    Pineiro R, Pendlebury S, Johansen-Berg H, Matthews PM (2002) Altered hemodynamic responses in patients after subcortical stroke measured by functional MRI. Stroke 33(1):103–109PubMedCrossRefGoogle Scholar
  97. 97.
    D’Esposito M, Deouell L, Gazzaley A (2003) Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging. Nat Rev Neurosci 4:863–872PubMedCrossRefGoogle Scholar
  98. 98.
    Handwerker DA, Gazzaley A, Inglis BA, D’Esposito M (2006) Reducing vascular variability of fMRI data across aging populations using a breath holding task. Hum Brain Mapp 28:846–859CrossRefGoogle Scholar
  99. 99.
    Wolf RL, Detre JA (2007) Clinical neuroimaging using arterial spin-labeled perfusion magnetic resonance imaging. Neurotherapeutics 4(3):346–359PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Brown GG, Clark C, Liu TT (2007) Measurement of cerebral perfusion with arterial spin labeling. Part 2. Applications. J Int Neuropsychol Soc 13(3):526–538PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Aguirre GK, Detre JA, Zarahn E, Alsop DC (2002) Experimental design and the relative sensitivity of BOLD and perfusion fMRI. Neuroimage 15(3):488–500PubMedCrossRefGoogle Scholar
  102. 102.
    Liu TT, Brown GG (2007) Measurement of cerebral perfusion with arterial spin labeling. Part 1. Methods. J Int Neuropsychol Soc 13(3):517–525PubMedCrossRefGoogle Scholar
  103. 103.
    Fernandez-Seara MA, Wang J, Wang Z et al (2007) Imaging mesial temporal lobe activation during scene encoding: comparison of fMRI using BOLD and arterial spin labeling. Hum Brain Mapp 28(12):1391–1400PubMedCrossRefGoogle Scholar
  104. 104.
    Feinberg DA, Beckett A, Chen L (2013) Arterial spin labeling with simultaneous multi-slice echo planar imaging. Magn Reson Med 70(6):1500–1506PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Kanwisher N, McDermott J, Chun MM (1997) The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 17:4302–4311PubMedGoogle Scholar
  106. 106.
    Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P (2001) Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293(5539):2425–2430PubMedCrossRefGoogle Scholar
  107. 107.
    Polyn SM, Natu VS, Cohen JD, Norman KA (2005) Category-specific cortical activity precedes retrieval during memory search. Science 310(5756):1963–1966PubMedCrossRefGoogle Scholar
  108. 108.
    Zarahn E, Rakitin BC, Abela D, Flynn J, Stern Y (2006) Distinct spatial patterns of brain activity associated with memory storage and search. Neuroimage 33(2):794–804PubMedCrossRefGoogle Scholar
  109. 109.
    Kay KN, Naselaris T, Prenger RJ, Gallant JG (2008) Identifying natural images from human brain activity. Nature 452:352–355PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Haxby JV, Connolly AC, Swaroop GJ (2014) Decoding neural representational spaces using multivariate pattern analysis. Annu Rev Neurosci 37:435–456PubMedCrossRefGoogle Scholar
  111. 111.
    Tong F, Pratte MS (2012) Decoding patterns of human brain activity. Annu Rev Psychol 63:483–509PubMedCrossRefGoogle Scholar
  112. 112.
    Todd MT, Nystrom LE, Cohen JE (2013) Confounds in multivariate pattern analysis: theory and rule representation case study. NeuroImage 77:157–165PubMedCrossRefGoogle Scholar
  113. 113.
    Chen AJW, Britton MS, Thompson TW, Turner GR, Vytlacil J, D’Esposito M (2012) Goal-directed attention alters the tuning of object-based representations in extrastriate cortex. Front Neurosci 6:187CrossRefGoogle Scholar
  114. 114.
    Çukur TNishimoto S, Huth A, Gallant J (2013) Attention during natural vision warps semantic representation across the human brain. Nat Neurosci 16:763–770CrossRefGoogle Scholar
  115. 115.
    Buchel C, Coull JT, Friston KJ (1999) The predictive value of changes in effective connectivity for human learning. Science 283(5407):1538–1541PubMedCrossRefGoogle Scholar
  116. 116.
    McIntosh AR, Grady CL, Haxby JV, Ungerleider LG, Horwitz B (1996) Changes in limbic and prefrontal functional interactions in a working memory task for faces. Cereb Cortex 6(4):571–584PubMedCrossRefGoogle Scholar
  117. 117.
    Gerstein GL, Perkel DH, Subramanian KN (1978) Identification of functionally related neural assemblies. Brain Res 140(1):43–62PubMedCrossRefGoogle Scholar
  118. 118.
    Penny WD, Stephan KE, Mechelli A, Friston KJ (2004) Modelling functional integration: a comparison of structural equation and dynamic causal models. Neuroimage 23(Suppl 1):S264–S274PubMedCrossRefGoogle Scholar
  119. 119.
    Sun FT, Miller LM, D’Esposito M (2004) Measuring interregional functional connectivity using coherence and partial coherence analyses of fMRI data. Neuroimage 21(2):647–658PubMedCrossRefGoogle Scholar
  120. 120.
    Sun FT, Miller LM, D’Esposito M (2005) Measuring temporal dynamics of functional networks using phase spectrum of fMRI data. Neuroimage 28(1):227–237PubMedCrossRefGoogle Scholar
  121. 121.
    Sun FT, Miller LM, Rao AA, D’Esposito M (2007) Functional connectivity of cortical networks involved in bimanual motor sequence learning. Cereb Cortex 17(5):1227–1234PubMedCrossRefGoogle Scholar
  122. 122.
    Gazzaley A, Rissman J, D’Esposito M (2004) Functional connectivity during working memory maintenance. Cogn Affect Behav Neurosci 4(4):580–599PubMedCrossRefGoogle Scholar
  123. 123.
    Fuhrmann Alpert G, Sun FT, Handwerker D, D’Esposito M, Knight RT (2007) Spatio-temporal information analysis of event-related BOLD responses. Neuroimage 34(4):1545–1561PubMedCrossRefGoogle Scholar
  124. 124.
    Rees G, Frith CD, Lavie N (1997) Modulating irrelevant motion perception by varying attentional load in an unrelated task. Science 278(5343):1616–1619PubMedCrossRefGoogle Scholar
  125. 125.
    Treisman AM (1969) Strategies and models of selective attention. Psychol Rev 76(3):282–299PubMedCrossRefGoogle Scholar
  126. 126.
    Lavie N, Tsal Y (1994) Perceptual load as a major determinant of the locus of selection in visual attention. Percept Psychophys 56(2):183–197PubMedCrossRefGoogle Scholar
  127. 127.
    McCarthy RA, Warrington EK (1994) Disorders of semantic memory. Philos Trans R Soc Lond B Biol Sci 346(1315):89–96PubMedCrossRefGoogle Scholar
  128. 128.
    Warrington EST (1984) Category specific semantic impairments. Brain 107:829–854PubMedCrossRefGoogle Scholar
  129. 129.
    Thompson-Schill SL (2003) Neuroimaging studies of semantic memory: inferring “how” from “where”. Neuropsychologia 41(3):280–292PubMedCrossRefGoogle Scholar
  130. 130.
    Thompson-Schill SL, D’Esposito M, Aguirre GK, Farah MJ (1997) Role of left inferior prefrontal cortex in retrieval of semantic knowledge: a reevaluation. Proc Natl Acad Sci U S A 94(26):14792–14797PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Thompson-Schill SL, Swick D, Farah MJ, D’Esposito M, Kan IP, Knight RT (1998) Verb generation in patients with focal frontal lesions: a neuropsychological test of neuroimaging findings. Proc Natl Acad Sci U S A 95(26):15855–15860PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Pascual-Leone A, Tarazona F, Keenan J, Tormos JM, Hamilton R, Catala MD (1999) Transcranial magnetic stimulation and neuroplasticity. Neuropsychologia 37(2):207–217PubMedCrossRefGoogle Scholar
  133. 133.
    Rushworth MF, Hadland KA, Paus T, Sipila PK (2002) Role of the human medial frontal cortex in task switching: a combined fMRI and TMS study. J Neurophysiol 87(5):2577–2592PubMedGoogle Scholar
  134. 134.
    Ruff CC, Bestmann S, Blankenburg F et al (2008) Distinct causal influences of parietal versus frontal areas on human visual cortex: evidence from concurrent TMS fMRI. Cereb Cortex 18(4):817–827PubMedCrossRefGoogle Scholar
  135. 135.
    Dehaene S, Spelke E, Pinel P, Stanescu R, Tsivkin S (1999) Sources of mathematical thinking: behavioral and brain-imaging evidence. Science 284(5416):970–974PubMedCrossRefGoogle Scholar
  136. 136.
    Gibbs SE, D’Esposito M (2005) Individual capacity differences predict working memory performance and prefrontal activity following dopamine receptor stimulation. Cogn Affect Behav Neurosci 5(2):212–221PubMedCrossRefGoogle Scholar
  137. 137.
    Gibbs SE, D’Esposito M (2005) A functional MRI study of the effects of bromocriptine, a dopamine receptor agonist, on component processes of working memory. Psychopharmacology (Berl) 180(4):644–653CrossRefGoogle Scholar
  138. 138.
    Gibbs SE, D’Esposito M (2006) A functional magnetic resonance imaging study of the effects of pergolide, a dopamine receptor agonist, on component processes of working memory. Neuroscience, 139:359–71Google Scholar
  139. 139.
    Cools R, Sheridan M, Jacobs E, D’Esposito M (2007) Impulsive personality predicts dopamine-dependent changes in frontostriatal activity during component processes of working memory. J Neurosci 27(20):5506–5514PubMedCrossRefGoogle Scholar
  140. 140.
    Kastner S, Pinsk MA (2004) Visual attention as a multilevel selection process. Cogn Affect Behav Neurosci 4(4):483–500PubMedCrossRefGoogle Scholar
  141. 141.
    Gazzaley A, Cooney JW, McEvoy K, Knight RT, D’Esposito M (2005) Top-down enhancement and suppression of the magnitude and speed of neural activity. J Cogn Neurosci 17(3):507–517PubMedCrossRefGoogle Scholar
  142. 142.
    Arnemann KL, Chen AJW, Novakovic-Agopian T, Gratton C, Nomura EM, D'Esposito M (2015) Functional brain network modularity predicts response to cognitive training after brain injury. Neurology 84:1568–74PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Chen AJW, Novakovic-Agopian T, Nycum TJ, Song S, Turner G, Rome S, Abrams G, D’Esposito M (2011) Training of goal-directed attention regulation enhances control over neural processing for individuals with brain injury. Brain 134(5):1541–1554PubMedCrossRefGoogle Scholar
  144. 144.
    Poldrack RA (2000) Imaging brain plasticity: conceptual and methodological issues – a theoretical review. Neuroimage 12(1):1–13PubMedCrossRefGoogle Scholar
  145. 145.
    Aron AR, Gluck MA, Poldrack RA (2006) Long-term test-retest reliability of functional MRI in a classification learning task. Neuroimage 29(3):1000–1006PubMedCrossRefGoogle Scholar
  146. 146.
    Wei X, Yoo SS, Dickey CC, Zou KH, Guttmann CR, Panych LP (2004) Functional MRI of auditory verbal working memory: long-term reproducibility analysis. Neuroimage 21(3):1000–1008PubMedCrossRefGoogle Scholar
  147. 147.
    Yoo SS, Wei X, Dickey CC, Guttmann CR, Panych LP (2005) Long-term reproducibility analysis of fMRI using hand motor task. Int J Neurosci 115(1):55–77PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mark D’Esposito
    • 1
    Email author
  • Andrew Kayser
    • 2
  • Anthony Chen
    • 3
  1. 1.Helen Wills Neuroscience InstituteUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of NeurologyUCSFSan FranciscoUSA
  3. 3.Department of NeurologyNorthern California VA Health Care SystemMartinezUSA

Personalised recommendations