RNA Isolation from Early Drosophila Larval Ovaries

  • Dana GanczEmail author
  • Lilach Gilboa
Part of the Methods in Molecular Biology book series (MIMB, volume 1463)


In the fruit fly Drosophila melanogaster, ovarian germline stem cells (GSCs) and their niches form during larval development. This process is poorly studied partly due to technical difficulties in isolating early larval ovaries. In addition, purifying RNA from larval ovaries proves to be more challenging than purifying it from other organs. Here we describe a technique for dissecting ovaries from early larvae and advise on how to extract RNA with maximum yield and purity. RNA isolation allows assaying gene expression in a direct and quantitative manner, which is invaluable for understanding molecular events underlying ovarian niche formation and GSC establishment.

Key words

RNA isolation TRIzol/TRI reagent Drosophila Larvae Ovary 


  1. 1.
    Gancz D, Gilboa L (2013) Insulin and Target of rapamycin signaling orchestrate the development of ovarian niche-stem cell units in Drosophila. Development 140(20):4145–4154PubMedCrossRefGoogle Scholar
  2. 2.
    Gancz D, Lengil T, Gilboa L (2011) Coordinated regulation of niche and stem cell precursors by hormonal signaling. PLoS Biol 9(11):e1001202PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Gilboa L, Lehmann R (2004) How different is Venus from Mars? The genetics of germ-line stem cells in Drosophila females and males. Development 131(20):4895–4905PubMedCrossRefGoogle Scholar
  4. 4.
    Gilboa L, Lehmann R (2006) Soma-germline interactions coordinate homeostasis and growth in the Drosophila gonad. Nature 443(7107):97–100PubMedCrossRefGoogle Scholar
  5. 5.
    Lengil T, Gancz D, Gilboa L (2015) Activin signaling balances proliferation and differentiation of ovarian niche precursors and enables adjustment of niche numbers. Development 142(5):883–892PubMedCrossRefGoogle Scholar
  6. 6.
    Dvorak Z, Pascussi JM, Modriansky M (2003) Approaches to messenger RNA detection - comparison of methods. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 147(2):131–135PubMedCrossRefGoogle Scholar
  7. 7.
    Sarikaya DP, Extavour CG (2015) The Hippo pathway regulates homeostatic growth of stem cell niche precursors in the Drosophila ovary. PLoS Genet 11(2):e1004962PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Song X, Call GB, Kirilly D, Xie T (2007) Notch signaling controls germline stem cell niche formation in the Drosophila ovary. Development 134(6):1071–1080PubMedCrossRefGoogle Scholar
  9. 9.
    Zhu CH, Xie T (2003) Clonal expansion of ovarian germline stem cells during niche formation in Drosophila. Development 130(12):2579–2588PubMedCrossRefGoogle Scholar
  10. 10.
    Hodin J, Riddiford LM (1998) The ecdysone receptor and ultraspiracle regulate the timing and progression of ovarian morphogenesis during Drosophila metamorphosis. Dev Genes Evol 208(6):304–317PubMedCrossRefGoogle Scholar
  11. 11.
    Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ (1979) Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18(24):5294–5299PubMedCrossRefGoogle Scholar
  12. 12.
    Rio DC, Ares M Jr, Hannon GJ, Nilsen TW (2010) Purification of RNA using TRIzol (TRI reagent). Cold Spring Harb Protoc 2010(6):pdb prot5439Google Scholar
  13. 13.
    Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162(1):156–159PubMedCrossRefGoogle Scholar
  14. 14.
    Sarkies P, Selkirk ME, Jones JT, Blok V, Boothby T, Goldstein B, Hanelt B, Ardila-Garcia A, Fast NM, Schiffer PM, Kraus C, Taylor MJ, Koutsovoulos G, Blaxter ML, Miska EA (2015) Ancient and novel small RNA pathways compensate for the loss of piRNAs in multiple independent nematode lineages. PLoS Biol 13(2):e1002061PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Ahmann GJ, Chng WJ, Henderson KJ, Price-Troska TL, DeGoey RW, Timm MM, Dispenzieri A, Greipp PR, Sable-Hunt A, Bergsagel L, Fonseca R (2008) Effect of tissue shipping on plasma cell isolation, viability, and RNA integrity in the context of a centralized good laboratory practice-certified tissue banking facility. Cancer Epidemiol Biomarkers Prev 17(3):666–673PubMedCrossRefGoogle Scholar
  16. 16.
    Kim Y-K, Yeo J, Ha M, Kim B, Kim VN (2012) Retraction notice to: cell adhesion-dependent control of microRNA decay. Molecular Cell 43, 1005-1014; September 16, 2011 (2012). Mol Cell 46(6):896CrossRefGoogle Scholar
  17. 17.
    Tautz D, Hancock JM, Webb DA, Tautz C, Dover GA (1988) Complete sequences of the rRNA genes of Drosophila melanogaster. Mol Biol Evol 5(4):366–376PubMedGoogle Scholar
  18. 18.
    Melen GJ, Pesce CG, Rossi MS, Kornblihtt AR (1999) Novel processing in a mammalian nuclear 28S pre-rRNA: tissue-specific elimination of an ‘intron’ bearing a hidden break site. EMBO J 18(11):3107–3118PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Macharia RW, Ombura FL, Aroko EO (2015) Insects’ RNA profiling reveals absence of “Hidden Break” in 28S ribosomal RNA molecule of onion thrips, thrips tabaci. J Nucleic Acids 2015:965294PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Biological RegulationWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations