Evaluation of the Asymmetric Division of Drosophila Male Germline Stem Cells

  • Mayu InabaEmail author
  • Yukiko M. Yamashita
Part of the Methods in Molecular Biology book series (MIMB, volume 1463)


Asymmetric cell division (ACD) is utilized in many stem cell systems to produce two daughter cells with different cell fates. Despite the fundamental importance of ACD during development and tissue homeostasis, the nature of ACD is far from being fully understood. Step-by-step observation of events during ACD allows us to understand processes that lead to ACD. Here we describe examples of how we evaluate ACD in vivo using the Drosophila male germline stem cell system.

Key words

Asymmetric cell division (ACD) Drosophila male germline stem cells (GSCs) Centrosome orientation Spindle orientation Centrosome orientation checkpoint (COC) 



The research in the Yamashita laboratory is supported by the Howard Hughes Medical Institute and the National Institute of Health (R01 GM118308). YMY is supported by the John D. and Catherine T. MacArthur Foundation.


  1. 1.
    Yamashita YM, Mahowald AP, Perlin JR et al (2007) Asymmetric inheritance of mother versus daughter centrosome in stem cell division. Science 315:518–521CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Yadlapalli S, Yamashita YM (2013) Chromosome-specific nonrandom sister chromatid segregation during stem-cell division. Nature 498:251–254CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Salzmann V, Chen C, Chiang C-YA et al (2014) Centrosome-dependent asymmetric inheritance of the midbody ring in Drosophila germline stem cell division. Mol Biol Cell 25:267–275CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Tran V, Lim C, Xie J et al (2012) Asymmetric division of Drosophila male germline stem cell shows asymmetric histone distribution. Science 338:679–682CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Wang XQ, Tsai JW, Imai JH et al (2009) Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. Nature 461:947–955CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Januschke J, Llamazares S, Reina J et al (2011) Drosophila neuroblasts retain the daughter centrosome. Nat Commun 2:243CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Gromley A, Yeaman C, Rosa J et al (2005) Centriolin anchoring of exocyst and SNARE complexes at the midbody is required for secretory-vesicle-mediated abscission. Cell 123:75–87CrossRefPubMedGoogle Scholar
  8. 8.
    Kuo T-C, Chen C-T, Baron D et al (2011) Midbody accumulation through evasion of autophagy contributes to cellular reprogramming and tumorigenicity. Nat Cell Biol 13:1214–1223CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ettinger AW, Wilsch-Bräuninger M, Marzesco A-M et al (2011) Proliferating versus differentiating stem and cancer cells exhibit distinct midbody-release behaviour. Nat Commun 2:503CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Xie J, Wooten M, Tran V et al (2015) Histone H3 threonine phosphorylation regulates asymmetric histone inheritance in the drosophila male germline. Cell 163:920–933CrossRefPubMedGoogle Scholar
  11. 11.
    Cheng J, Turkel N, Hemati N et al (2008) Centrosome misorientation reduces stem cell division during ageing. Nature 456:599–604CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Roth TM, Chiang C-YYA, Inaba M et al (2012) Centrosome misorientation mediates slowing of the cell cycle under limited nutrient conditions in Drosophila male germline stem cells. Mol Biol Cell 23:1524–1532CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Yamashita YM, Jones DL, Fuller MT (2003) Orientation of asymmetric stem cell division by the APC tumor suppressor and centrosome. Science 301:1547–1550CrossRefPubMedGoogle Scholar
  14. 14.
    Inaba M, Venkei ZG, Yamashita YM (2015) The polarity protein Baz forms a platform for the centrosome orientation during asymmetric stem cell division in the Drosophila male germline. eLife 4:e04960CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Venkei ZG, Yamashita YM (2015) The centrosome orientation checkpoint is germline stem cell specific and operates prior to the spindle assembly checkpoint in Drosophila testis. Development 142:62–69CrossRefPubMedGoogle Scholar
  16. 16.
    Salzmann V, Inaba M, Cheng J et al (2013) Lineage tracing quantification reveals symmetric stem cell division in drosophila male germline stem cells. Cell Mol Bioeng 6:441–448CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kiger AA, Jones DL, Schulz C et al (2001) Stem cell self-renewal specified by JAK-STAT activation in response to a support cell cue. Science 294:2542–2545CrossRefPubMedGoogle Scholar
  18. 18.
    Tulina N, Matunis E (2001) Control of stem cell self-renewal in Drosophila spermatogenesis by JAK-STAT signaling. Science 294:2546–2549CrossRefPubMedGoogle Scholar
  19. 19.
    Leatherman JL, Dinardo S (2010) Germline self-renewal requires cyst stem cells and stat regulates niche adhesion in Drosophila testes. Nat Cell Biol 12:806–811CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Sheng XR, Matunis E (2011) Live imaging of the Drosophila spermatogonial stem cell niche reveals novel mechanisms regulating germline stem cell output. Development 138:3367–3376CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Cheng J, Hunt AJ (2009) Time-lapse live imaging of stem cells in Drosophila testis. Current Protoc Stem Cell Biol Chapter 2: Unit 2E.2Google Scholar
  22. 22.
    Inaba M, Buszczak M, Yamashita YM (2015) Nanotubes mediate niche-stem-cell signalling in the Drosophila testis. Nature 523:329–332CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Cell and Developmental Biology, Life Sciences InstituteHoward Hughes Medical Institute, University of Michigan Medical SchoolAnn ArborUSA
  2. 2.Department of Molecular BiologyUniversity of Texas Southwestern Medical Center at DallasDallasUSA

Personalised recommendations