Advertisement

Visualization and Lineage Tracing of Pax7+ Spermatogonial Stem Cells in the Mouse

  • Gina M. AloisioEmail author
  • Ileana Cuevas
  • Yuji Nakada
  • Christopher G. Peña
  • Diego H. CastrillonEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1463)

Abstract

The precise identity of spermatogonial stem cells—the germline stem cell of the adult testis—remains a controversial topic. Technical limitations have included the lack of specific markers and methods for lineage tracing of Asingle spermatogonia and their subsets. Immunolocalization of proteins in tissue sections has been a standard tool for the in situ identification and visualization of rare cellular subsets. However, these studies are limited by the need for faithful and reliable protein markers to define these cell types, as well as the availability of specific antibodies to these markers. Here we describe the use of a monoclonal antibody to Pax7 as a means to detect spermatogonial stem cells (SSCs) both in tissue sections and in intact seminiferous tubules. Furthermore, we describe methods for lineage tracing as an alternative method to visualize Pax7+ spermatogonial stem cells and their progeny.

Key words

Pax7 Spermatogonial stem cell Spermatogenesis Lineage tracing Immunostain 

References

  1. 1.
    Oatley JM, Brinster RL (2008) Regulation of spermatogonial stem cell self-renewal in mammals. Annu Rev Cell Dev Biol 24:263–286. doi: 10.1146/annurev.cellbio.24.110707.175355 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    de Rooij DG (2001) Proliferation and differentiation of spermatogonial stem cells. Reproduction 121(3):347–354CrossRefPubMedGoogle Scholar
  3. 3.
    de Rooij DG, Russell LD (2000) All you wanted to know about spermatogonia but were afraid to ask. J Androl 21(6):776–798PubMedGoogle Scholar
  4. 4.
    Oakberg EF (1971) Spermatogonial stem-cell renewal in the mouse. Anat Rec 169(3):515–531. doi: 10.1002/ar.1091690305 CrossRefPubMedGoogle Scholar
  5. 5.
    Yang QE, Oatley JM (2014) Spermatogonial stem cell functions in physiological and pathological conditions. Curr Top Dev Biol 107:235–267. doi: 10.1016/B978-0-12-416022-4.00009-3 CrossRefPubMedGoogle Scholar
  6. 6.
    Brinster RL, Avarbock MR (1994) Germline transmission of donor haplotype following spermatogonial transplantation. Proc Natl Acad Sci U S A 91(24):11303–11307CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Nagano MC, Yeh JR (2013) The identity and fate decision control of spermatogonial stem cells: where is the point of no return? Curr Top Dev Biol 102:61–95. doi: 10.1016/B978-0-12-416024-8.00003-9 CrossRefPubMedGoogle Scholar
  8. 8.
    Chan F, Oatley MJ, Kaucher AV, Yang QE, Bieberich CJ, Shashikant CS, Oatley JM (2014) Functional and molecular features of the Id4+ germline stem cell population in mouse testes. Genes Dev 28(12):1351–1362. doi: 10.1101/gad.240465.114 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Nakagawa T, Sharma M, Nabeshima Y, Braun RE, Yoshida S (2010) Functional hierarchy and reversibility within the murine spermatogenic stem cell compartment. Science 328(5974):62–67, doi:science.1182868 [pii] 10.1126/science.1182868CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zhang Z, Shao S, Meistrich ML (2007) The radiation-induced block in spermatogonial differentiation is due to damage to the somatic environment, not the germ cells. J Cell Physiol 211(1):149–158. doi: 10.1002/jcp.20910 CrossRefPubMedGoogle Scholar
  11. 11.
    Yoshida S (2012) Elucidating the identity and behavior of spermatogenic stem cells in the mouse testis. Reproduction 144(3):293–302. doi: 10.1530/REP-11-0320 CrossRefPubMedGoogle Scholar
  12. 12.
    Nagano MC (2003) Homing efficiency and proliferation kinetics of male germ line stem cells following transplantation in mice. Biol Reprod 69(2):701–707. doi: 10.1095/biolreprod.103.016352 CrossRefPubMedGoogle Scholar
  13. 13.
    Abid SN, Richardson TE, Powell HM, Jaichander P, Chaudhary J, Chapman KM, Hamra FK (2014) A-single spermatogonia heterogeneity and cell cycles synchronize with rat seminiferous epithelium stages VIII-IX. Biol Reprod 90(2):32. doi: 10.1095/biolreprod.113.113555 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Aloisio GM, Nakada Y, Saatcioglu HD, Pena CG, Baker MD, Tarnawa ED, Mukherjee J, Manjunath H, Bugde A, Sengupta AL, Amatruda JF, Cuevas I, Hamra FK, Castrillon DH (2014) PAX7 expression defines germline stem cells in the adult testis. J Clin Invest. doi: 10.1172/JCI75943 PubMedPubMedCentralGoogle Scholar
  15. 15.
    Keller C, Hansen MS, Coffin CM, Capecchi MR (2004) Pax3:Fkhr interferes with embryonic Pax3 and Pax7 function: implications for alveolar rhabdomyosarcoma cell of origin. Genes Dev 18(21):2608–2613. doi: 10.1101/gad.1243904 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lepper C, Conway SJ, Fan CM (2009) Adult satellite cells and embryonic muscle progenitors have distinct genetic requirements. Nature 460(7255):627–631. doi: 10.1038/nature08209 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Murphy M, Kardon G (2011) Origin of vertebrate limb muscle: the role of progenitor and myoblast populations. Curr Top Dev Biol 96:1–32. doi: 10.1016/B978-0-12-385940-2.00001-2 CrossRefPubMedGoogle Scholar
  18. 18.
    Buaas FW, Kirsh AL, Sharma M, McLean DJ, Morris JL, Griswold MD, de Rooij DG, Braun RE (2004) Plzf is required in adult male germ cells for stem cell self-renewal. Nat Genet 36(6):647–652. doi: 10.1038/ng1366 CrossRefPubMedGoogle Scholar
  19. 19.
    Goertz MJ, Wu Z, Gallardo TD, Hamra FK, Castrillon DH (2011) Foxo1 is required in mouse spermatogonial stem cells for their maintenance and the initiation of spermatogenesis. J Clin Invest 121(9):3456–3466. doi: 10.1172/JCI57984, 57984 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Franca LR, Avelar GF, Almeida FF (2005) Spermatogenesis and sperm transit through the epididymis in mammals with emphasis on pigs. Theriogenology 63(2):300–318. doi: 10.1016/j.theriogenology.2004.09.014 CrossRefPubMedGoogle Scholar
  21. 21.
    Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21(1):70–71CrossRefPubMedGoogle Scholar
  22. 22.
    Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, Ng LL, Palmiter RD, Hawrylycz MJ, Jones AR, Lein ES, Zeng H (2010) A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 13(1):133–140. doi: 10.1038/nn.2467 CrossRefPubMedGoogle Scholar
  23. 23.
    Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo L (2007) A global double-fluorescent Cre reporter mouse. Genesis 45(9):593–605. doi: 10.1002/dvg.20335 CrossRefPubMedGoogle Scholar
  24. 24.
    Gallardo T, Shirley L, John GB, Castrillon DH (2007) Generation of a germ cell-specific mouse transgenic Cre line, Vasa-Cre. Genesis 45(6):413–417CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Jockusch H, Voigt S, Eberhard D (2003) Localization of GFP in frozen sections from unfixed mouse tissues: immobilization of a highly soluble marker protein by formaldehyde vapor. J Histochem Cytochem 51(3):401–404CrossRefPubMedGoogle Scholar
  26. 26.
    Kusser KL, Randall TD (2003) Simultaneous detection of EGFP and cell surface markers by fluorescence microscopy in lymphoid tissues. J Histochem Cytochem 51(1):5–14CrossRefPubMedGoogle Scholar
  27. 27.
    van den Pol AN, Ghosh PK (1998) Selective neuronal expression of green fluorescent protein with cytomegalovirus promoter reveals entire neuronal arbor in transgenic mice. J Neurosci 18(24):10640–10651PubMedGoogle Scholar
  28. 28.
    Sullivan KF, Kay SA, American Society for Cell Biology (1999) Green fluorescent proteins, vol 58, Methods in cell biology. Academic Press, San Diego, LondonGoogle Scholar
  29. 29.
    Joosen L, Hink MA, Gadella TW Jr, Goedhart J (2014) Effect of fixation procedures on the fluorescence lifetimes of Aequorea victoria derived fluorescent proteins. J Microsc 256(3):166–176. doi: 10.1111/jmi.12168 CrossRefPubMedGoogle Scholar
  30. 30.
    Chapman SC, Lawson A, Macarthur WC, Wiese RJ, Loechel RH, Burgos-Trinidad M, Wakefield JK, Ramabhadran R, Mauch TJ, Schoenwolf GC (2005) Ubiquitous GFP expression in transgenic chickens using a lentiviral vector. Development 132(5):935–940. doi: 10.1242/dev.01652 CrossRefPubMedGoogle Scholar
  31. 31.
    Kawakami A, Kimura-Kawakami M, Nomura T, Fujisawa H (1997) Distributions of PAX6 and PAX7 proteins suggest their involvement in both early and late phases of chick brain development. Mech Dev 66(1-2):119–130CrossRefPubMedGoogle Scholar
  32. 32.
    Goldenthal KL, Hedman K, Chen JW, August JT, Willingham MC (1985) Postfixation detergent treatment for immunofluorescence suppresses localization of some integral membrane proteins. J Histochem Cytochem 33(8):813–820CrossRefPubMedGoogle Scholar
  33. 33.
    Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA (2000) Pax7 is required for the specification of myogenic satellite cells. Cell 102(6):777–786CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Pathology and Cecil H. and Ida Green Center for Reproductive Biology SciencesUniversity of Texas Southwestern Medical CenterDallasUSA

Personalised recommendations