Skip to main content

Quantitative Proteomics Analysis of Leukemia Cells

  • Protocol
  • First Online:
Chronic Myeloid Leukemia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1465))

Abstract

Chronic myeloid leukemia (CML) is driven by the oncogenic fusion kinase Bcr-Abl, which organizes its own signaling network with various proteins. These proteins, their interactions, and their role in relevant signaling pathways can be analyzed by quantitative mass spectrometry (MS) approaches in various models systems, e.g., in cell culture models. In this chapter, we describe in detail immunoprecipitations and quantitative proteomics analysis using stable isotope labeling by amino acids in cell culture (SILAC) of components of the Bcr-Abl signaling pathway in the human CML cell line K562.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Faderl S, Talpaz M, Estrov Z, Kantarjian HM (1999) Chronic myelogenous leukemia: biology and therapy. Ann Intern Med 131:207–219

    Article  CAS  PubMed  Google Scholar 

  2. Hantschel O, Superti-Furga G (2004) Regulation of the c-Abl and Bcr-Abl tyrosine kinases. Nat Rev Mol Cell Biol 5:33–44

    Article  CAS  PubMed  Google Scholar 

  3. Wohrle FU, Daly RJ, Brummer T (2009) Function, regulation and pathological roles of the Gab/DOS docking proteins. Cell Commun Signal 7:22

    Article  PubMed  PubMed Central  Google Scholar 

  4. Donato NJ, Wu JY, Stapley J, Gallick G, Lin H, Arlinghaus R, Talpaz M (2003) BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571. Blood 101:690–698

    Article  CAS  PubMed  Google Scholar 

  5. Wilson-Rawls J, Liu J, Laneuville P, Arlinghaus RB (1997) P210 Bcr-Abl interacts with the interleukin-3 beta c subunit and constitutively activates Jak2. Leukemia 11(Suppl 3):428–431

    PubMed  Google Scholar 

  6. Halbach S, Rigbolt KT, Wohrle FU, Diedrich B, Gretzmeier C, Brummer T, Dengjel J (2013) Alterations of Gab2 signalling complexes in imatinib and dasatinib treated chronic myeloid leukaemia cells. Cell Commun Signal 11:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wohrle FU, Halbach S, Aumann K, Schwemmers S, Braun S, Auberger P, Schramek D, Penninger JM, Laßmann S, Werner M, Waller CF, Pahl HL, Zeiser R, Daly RJ, Brummer T (2013) Gab2 signaling in chronic myeloid leukemia cells confers resistance to multiple Bcr-Abl inhibitors. Leukemia 27:118–129

    Article  CAS  PubMed  Google Scholar 

  8. Preisinger C, Schwarz JP, Bleijerveld OB, Corradini E, Muller PJ, Anderson KI, Kolch W, Scholten A, Heck AJ (2013) Imatinib-dependent tyrosine phosphorylation profiling of Bcr-Abl-positive chronic myeloid leukemia cells. Leukemia 27:743–746

    Article  CAS  PubMed  Google Scholar 

  9. Druker BJ (2008) Translation of the Philadelphia chromosome into therapy for CML. Blood 112:4808–4817

    Article  CAS  PubMed  Google Scholar 

  10. Sawyers CL (2009) Shifting paradigms: the seeds of oncogene addiction. Nat Med 15:1158–1161

    Article  CAS  PubMed  Google Scholar 

  11. Hunter T (2007) Treatment for chronic myelogenous leukemia: the long road to imatinib. J Clin Invest 117:2036–2043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Burchert A (2007) Roots of imatinib resistance: a question of self-renewal? Drug Resist Updat 10:152–161

    Article  CAS  PubMed  Google Scholar 

  13. von Bubnoff N, Duyster J (2010) Chronic myelogenous leukemia: treatment and monitoring. Dtsch Arztebl Int 107:114–121

    Google Scholar 

  14. Druker BJ, Guilhot F, O‘Brien SG, Gathmann I, Kantarjian H, Gattermann N, Deininger MW, Silver RT, Goldman JM, Stone RM, Cervantes F, Hochhaus A, Powell BL, Gabrilove JL, Rousselot P, Reiffers J, Cornelissen JJ, Hughes T, Agis H, Fischer T, Verhoef G, Shepherd J, Saglio G, Gratwohl A, Nielsen JL, Radich JP, Simonsson B, Taylor BM, So C, Letvak L, Larson RA, IRIS Investigators (2006) Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 355:2408–2417

    Article  CAS  PubMed  Google Scholar 

  15. O‘Hare T, Eide CA, Deininger MW (2007) Bcr-Abl kinase domain mutations, drug resistance, and the road to a cure for chronic myeloid leukemia. Blood 110:2242–2249

    Article  PubMed  Google Scholar 

  16. O‘Hare T, Eide CA, Deininger MW (2008) New Bcr-Abl inhibitors in chronic myeloid leukemia: keeping resistance in check. Expert Opin Investig Drugs 17:865–878

    Article  PubMed  Google Scholar 

  17. Weisberg E, Manley PW, Cowan-Jacob SW, Hochhaus A, Griffin JD (2007) Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat Rev Cancer 7:345–356

    Article  CAS  PubMed  Google Scholar 

  18. O‘Hare T, Deininger MW, Eide CA, Clackson T, Druker BJ (2011) Targeting the BCR-ABL signaling pathway in therapy-resistant Philadelphia chromosome-positive leukemia. Clin Cancer Res 17:212–221

    Article  PubMed  Google Scholar 

  19. Bixby D, Talpaz M (2011) Seeking the causes and solutions to imatinib-resistance in chronic myeloid leukemia. Leukemia 25:7–22

    Article  CAS  PubMed  Google Scholar 

  20. Sprenger A, Weber S, Zarai M, Engelke R, Nascimento JM, Gretzmeier C, Hilpert M, Boerries M, Has C, Busch H, Bruckner-Tuderman L, Dengjel J (2013) Consistency of the proteome in primary human keratinocytes with respect to gender, age, and skin localization. Mol Cell Proteomics 12:2509–2521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dengjel J, Akimov V, Olsen JV, Bunkenborg J, Mann M, Blagoev B, Andersen JS (2007) Quantitative proteomic assessment of very early cellular signaling events. Nat Biotechnol 25:566–568

    Article  CAS  PubMed  Google Scholar 

  22. Kuttner V, Mack C, Gretzmeier C, Bruckner-Tuderman L, Dengjel J (2014) Loss of collagen VII is associated with reduced transglutaminase 2 abundance and activity. J Invest Dermatol 134:2381–2389

    Article  PubMed  Google Scholar 

  23. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386

    Article  CAS  PubMed  Google Scholar 

  24. Hsu JL, Huang SY, Chow NH, Chen SH (2003) Stable-isotope dimethyl labeling for quantitative proteomics. Anal Chem 75:6843–6852

    Article  CAS  PubMed  Google Scholar 

  25. Zimmermann AC, Zarei M, Eiselein S, Dengjel J (2010) Quantitative proteomics for the analysis of spatio-temporal protein dynamics during autophagy. Autophagy 6:1009–1016

    Article  CAS  PubMed  Google Scholar 

  26. Dengjel J, Kratchmarova I, Blagoev B (2010) Mapping protein-protein interactions by quantitative proteomics. Methods Mol Biol 658:267–278

    Article  CAS  PubMed  Google Scholar 

  27. Kristensen AR, Schandorff S, Hoyer-Hansen M, Nielsen MO, Jaattela M, Dengjel J, Andersen JS (2008) Ordered organelle degradation during starvation-induced autophagy. Mol Cell Proteomics 7:2419–2428

    Article  CAS  PubMed  Google Scholar 

  28. Kruger M, Moser M, Ussar S, Thievessen I, Luber CA, Forner F, Schmidt S, Zanivan S, Fässler R, Mann M (2008) SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell 134:353–364

    Article  PubMed  Google Scholar 

  29. Sury MD, Chen JX, Selbach M (2010) The SILAC fly allows for accurate protein quantification in vivo. Mol Cell Proteomics 9:2173–2183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Blagoev B, Mann M (2006) Quantitative proteomics to study mitogen-activated protein kinases. Methods 40:243–250

    Article  CAS  PubMed  Google Scholar 

  31. Lossner C, Warnken U, Pscherer A, Schnolzer M (2011) Preventing arginine-to-proline conversion in a cell-line-independent manner during cell cultivation under stable isotope labeling by amino acids in cell culture (SILAC) conditions. Anal Biochem 412:123–125

    Article  PubMed  Google Scholar 

  32. Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860

    Article  CAS  PubMed  Google Scholar 

  33. Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2:1896–1906

    Article  CAS  PubMed  Google Scholar 

  34. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372

    Article  CAS  PubMed  Google Scholar 

  35. Cox J, Mann M (2012) 1D and 2D annotation enrichment: a statistical method integrating quantitative proteomics with complementary high-throughput data. BMC Bioinformatics 13(Suppl 16):S12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lozzio CB, Lozzio BB (1975) Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood 45:321–334

    CAS  PubMed  Google Scholar 

  37. Klein E, Ben-Bassat H, Neumann H, Ralph P, Zeuthen J, Polliack A, Vanky F (1976) Properties of the K562 cell line, derived from a patient with chronic myeloid leukemia. Int J Cancer 18:421–431

    Article  CAS  PubMed  Google Scholar 

  38. Andersson LC, Nilsson K, Gahmberg CG (1979) K562--a human erythroleukemic cell line. Int J Cancer 23:143–147

    Article  CAS  PubMed  Google Scholar 

  39. Schlosser A, Vanselow JT, Kramer A (2005) Mapping of phosphorylation sites by a multi-protease approach with specific phosphopeptide enrichment and NanoLC-MS/MS analysis. Anal Chem 77:5243–5250

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the Excellence Initiative of the German Research Foundation (GSC-4, Spemann Graduate School) and the José Carreras Leukämie Stiftung e.V. (project 13/12). TB is also supported by the Emmy-Noether and Heisenberg programs of the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jörn Dengjel or Tilman Brummer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Halbach, S., Dengjel, J., Brummer, T. (2016). Quantitative Proteomics Analysis of Leukemia Cells. In: Li, S., Zhang, H. (eds) Chronic Myeloid Leukemia. Methods in Molecular Biology, vol 1465. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-4011-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-4011-0_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-4009-7

  • Online ISBN: 978-1-4939-4011-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics