Skip to main content

Application of Systems Biology to Neuroproteomics: The Path to Enhanced Theranostics in Traumatic Brain Injury

  • Protocol
  • First Online:
Injury Models of the Central Nervous System

Abstract

The application of systems biology tools in analyzing heterogeneous data from multiple sources has become a necessity, especially in biomarker discovery. Such tools were developed with several approaches to address different types of research questions and hypotheses. In the field of neurotrauma and traumatic brain injury (TBI), three distinct approaches have been used so far as systems biology tools, namely functional group categorization, pathway analysis, and protein-protein interaction (PPI) networks. The databases allow for query of the system to identify candidate targets which can be further studied to elucidate potential downstream biomarkers indicative of disease progression, severity, and improvement. The various systems biology tools, databases, and strategies that can be implemented on available TBI data in neuroproteomic studies are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yu C, Kobeissy F (2015) Frontiers in Neuroengineering Systems Biology Applications to Decipher Mechanisms and Novel Biomarkers in CNS Trauma. In: Kobeissy FH, editor. Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects. Boca Raton (FL): CRC Press/Taylor & Francis (c) 2015 by Taylor & Francis Group, LLC.

    Google Scholar 

  2. Baumgartner C, Osl M, Netzer M, Baumgartner D (2011) Bioinformatic-driven search for metabolic biomarkers in disease. J Clin Bioinformatics 1:2

    Article  CAS  Google Scholar 

  3. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, Diemer K, Muruganujan A, Narechania A (2003) PANTHER: a library of protein families and subfamilies indexed by function. Genome Res 13:2129–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Magrane M, Consortium U (2011) UniProt Knowledgebase: a hub of integrated protein data. Database, bar009

    Google Scholar 

  6. Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer EL, Eddy SR, Bateman A, Finn RD (2012) The Pfam protein families database. Nucleic Acids Res 40:D290–D301

    Article  CAS  PubMed  Google Scholar 

  7. Jeter CB, Hergenroeder GW, Hylin MJ, Redell JB, Moore AN, Dash PK (2013) Biomarkers for the diagnosis and prognosis of mild traumatic brain injury/concussion. J Neurotrauma 30:657–670

    Article  PubMed  Google Scholar 

  8. Strimbu K, Tavel JA (2010) What are biomarkers? Curr Opin HIV AIDS 5:463–466

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kobeissy FH, Sadasivan S, Oli MW, Robinson G, Larner SF, Zhang Z, Hayes RL, Wang KK (2008) Neuroproteomics and systems biology-based discovery of protein biomarkers for traumatic brain injury and clinical validation. Proteomics Clin Appl 2:1467–1483

    Article  CAS  PubMed  Google Scholar 

  10. Boutte A, Kobeissy F, Wang KK, Zhang Z, Tortella F, Dave JR, Schmid K (2014) Protein biomarkers in traumatic brain injury: an omics approach. In: Biomarkers of brain injury and neurological disorders. CRC Press, Boca Raton, FL, p 42

    Google Scholar 

  11. Coronado VG, Xu L, Basavaraju SV, McGuire LC, Wald MM, Faul MD, Guzman BR, Hemphill JD, Centers for Disease, C., and Prevention (2011) Surveillance for traumatic brain injury-related deaths--United States, 1997-2007. Morb Mortal Wkly Rep Surveill Summ 60:1–32

    Google Scholar 

  12. Galarneau MR, Woodruff SI, Dye JL, Mohrle CR, Wade AL (2008) Traumatic brain injury during operation Iraqi freedom: findings from the United States Navy-Marine Corps Combat Trauma Registry. J Neurosurg 108:950–957

    Article  PubMed  Google Scholar 

  13. Thompson HJ, McCormick WC, Kagan SH (2006) Traumatic brain injury in older adults: epidemiology, outcomes, and future implications. J Am Geriatr Soc 54:1590–1595

    Article  PubMed  PubMed Central  Google Scholar 

  14. Feigin VL, Barker-Collo S, Krishnamurthi R, Theadom A, Starkey N (2010) Epidemiology of ischaemic stroke and traumatic brain injury. Best Pract Res Clin Anaesthesiol 24:485–494

    Article  PubMed  Google Scholar 

  15. Ghajar J (2000) Traumatic brain injury. Lancet 356:923–929

    Article  CAS  PubMed  Google Scholar 

  16. Maas AI, Stocchetti N, Bullock R (2008) Moderate and severe traumatic brain injury in adults. Lancet Neurol 7:728–741

    Article  PubMed  Google Scholar 

  17. Guingab-Cagmat JD, Cagmat EB, Hayes RL, Anagli J (2013) Integration of proteomics, bioinformatics, and systems biology in traumatic brain injury biomarker discovery. Front Neurol 4:61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yuh EL, Mukherjee P, Lingsma HF, Yue JK, Ferguson AR, Gordon WA, Valadka AB, Schnyer DM, Okonkwo DO, Maas AI, Manley GT, Investigators T-T (2013) Magnetic resonance imaging improves 3-month outcome prediction in mild traumatic brain injury. Ann Neurol 73:224–235

    Article  PubMed  Google Scholar 

  19. Armstrong JD, Pocklington AJ, Cumiskey MA, Grant SG (2006) Reconstructing protein complexes: from proteomics to systems biology. Proteomics 6:4724–4731

    Article  CAS  PubMed  Google Scholar 

  20. Assmus HE, Herwig R, Cho KH, Wolkenhauer O (2006) Dynamics of biological systems: role of systems biology in medical research. Expert Rev Mol Diagn 6:891–902

    Article  PubMed  Google Scholar 

  21. Bard J (2007) Systems developmental biology: the use of ontologies in annotating models and in identifying gene function within and across species. Mamm Genome 18:402–411

    Article  PubMed  PubMed Central  Google Scholar 

  22. Barrett CL, Kim TY, Kim HU, Palsson BO, Lee SY (2006) Systems biology as a foundation for genome-scale synthetic biology. Curr Opin Biotechnol 17:488–492

    Article  CAS  PubMed  Google Scholar 

  23. Boettler T, Schultheiss M, Blum HE (2007) Systems biology. Dtsch Med Wochenschr 132:2702–2705

    Article  CAS  PubMed  Google Scholar 

  24. Kitano H (2002) Computational systems biology. Nature 420:206–210

    Article  CAS  PubMed  Google Scholar 

  25. Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664

    Article  CAS  PubMed  Google Scholar 

  26. Davidov E, Holland J, Marple E, Naylor S (2003) Advancing drug discovery through systems biology. Drug Discov Today 8:175–183

    Article  CAS  PubMed  Google Scholar 

  27. Chen SS, Haskins WE, Ottens AK, Hayes RL, Denslow N, Wang KKW (2007) Bioinformatics for traumatic brain injury: proteomic data mining. Springer Ser Optim A 7:363–387

    Google Scholar 

  28. Feala JD, Abdulhameed MD, Yu C, Dutta B, Yu X, Schmid K, Dave J, Tortella F, Reifman J (2013) Systems biology approaches for discovering biomarkers for traumatic brain injury. J Neurotrauma 30:1101–1116

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ali A, Zahraa S, Zhiqun Z, Firas K, Kevin KWW (2014) Neuro-proteomics and neuro-systems biology in the quest of TBI biomarker discovery. In: Biomarkers of brain injury and neurological disorders. CRC Press, Boca Raton, FL, pp 3–41

    Google Scholar 

  30. Beltrao P, Kiel C, Serrano L (2007) Structures in systems biology. Curr Opin Struct Biol 17:378–384

    Article  CAS  PubMed  Google Scholar 

  31. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D, Cornish-Bowden A, Cuellar AA, Dronov S, Gilles ED, Ginkel M, Gor V, Goryanin II, Hedley WJ, Hodgman TC, Hofmeyr JH, Hunter PJ, Juty NS, Kasberger JL, Kremling A, Kummer U, Le Novere N, Loew LM, Lucio D, Mendes P, Minch E, Mjolsness ED, Nakayama Y, Nelson MR, Nielsen PF, Sakurada T, Schaff JC, Shapiro BE, Shimizu TS, Spence HD, Stelling J, Takahashi K, Tomita M, Wagner J, Wang J, Forum S (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19:524–531

    Article  CAS  PubMed  Google Scholar 

  32. Boutte AM, Yao C, Kobeissy F, May Lu XC, Zhang Z, Wang KK, Schmid K, Tortella FC, Dave JR (2012) Proteomic analysis and brain-specific systems biology in a rodent model of penetrating ballistic-like brain injury. Electrophoresis 33:3693–3704

    Article  CAS  PubMed  Google Scholar 

  33. Matzilevich DA, Rall JM, Moore AN, Grill RJ, Dash PK (2002) High-density microarray analysis of hippocampal gene expression following experimental brain injury. J Neurosci Res 67:646–663

    Article  CAS  PubMed  Google Scholar 

  34. Natale JE, Ahmed F, Cernak I, Stoica B, Faden AI (2003) Gene expression profile changes are commonly modulated across models and species after traumatic brain injury. J Neurotrauma 20:907–927

    Article  PubMed  Google Scholar 

  35. Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M (2010) KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 38:D355–D360

    Article  CAS  PubMed  Google Scholar 

  36. Croft D (2013) Building models using Reactome pathways as templates. Methods Mol Biol 1021:273–283

    Article  CAS  PubMed  Google Scholar 

  37. D’Eustachio P (2013) Pathway databases: making chemical and biological sense of the genomic data flood. Chem Biol 20:629–635

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tarca AL, Draghici S, Khatri P, Hassan SS, Mittal P, Kim JS, Kim CJ, Kusanovic JP, Romero R (2009) A novel signaling pathway impact analysis. Bioinformatics 25:75–82

    Article  CAS  PubMed  Google Scholar 

  39. Khatri P, Sirota M, Butte AJ (2012) Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput Biol 8:e1002375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fang Z, Tian W, Ji H (2012) A network-based gene-weighting approach for pathway analysis. Cell Res 22:565–580

    Article  CAS  PubMed  Google Scholar 

  41. Mieczkowski J, Swiatek-Machado K, Kaminska B (2012) Identification of pathway deregulation--gene expression based analysis of consistent signal transduction. PLoS One 7:e41541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Haynes WA, Higdon R, Stanberry L, Collins D, Kolker E (2013) Differential expression analysis for pathways. PLoS Comput Biol 9:e1002967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Martini P, Sales G, Massa MS, Chiogna M, Romualdi C (2013) Along signal paths: an empirical gene set approach exploiting pathway topology. Nucleic Acids Res 41:e19

    Article  CAS  PubMed  Google Scholar 

  44. Judeh T, Johnson C, Kumar A, Zhu D (2013) TEAK: topology enrichment analysis framework for detecting activated biological subpathways. Nucleic Acids Res 41:1425–1437

    Article  CAS  PubMed  Google Scholar 

  45. Ideker T, Ozier O, Schwikowski B, Siegel AF (2002) Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18(Suppl 1):S233–S240

    Article  PubMed  Google Scholar 

  46. Guo Z, Wang L, Li Y, Gong X, Yao C, Ma W, Wang D, Li Y, Zhu J, Zhang M, Yang D, Rao S, Wang J (2007) Edge-based scoring and searching method for identifying condition-responsive protein-protein interaction sub-network. Bioinformatics 23:2121–2128

    Article  CAS  PubMed  Google Scholar 

  47. Stuart JM, Segal E, Koller D, Kim SK (2003) A gene-coexpression network for global discovery of conserved genetic modules. Science 302:249–255

    Article  CAS  PubMed  Google Scholar 

  48. Yang J, Roy A, Zhang Y (2013) Protein-ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics 29:2588–2595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sohler F, Hanisch D, Zimmer R (2004) New methods for joint analysis of biological networks and expression data. Bioinformatics 20:1517–1521

    Article  CAS  PubMed  Google Scholar 

  50. Nacu S, Critchley-Thorne R, Lee P, Holmes S (2007) Gene expression network analysis and applications to immunology. Bioinformatics 23:850–858

    Article  CAS  PubMed  Google Scholar 

  51. Dittrich MT, Klau GW, Rosenwald A, Dandekar T, Muller T (2008) Identifying functional modules in protein-protein interaction networks: an integrated exact approach. Bioinformatics 24:i223–i231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Faul M, Xu L, Wald MM, Coronado V, Dellinger AM (2010) Traumatic Brain Injury in the United States: National Estimates of Prevalence and Incidence, 2002-2006. Inj Prev 16:A268

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zaynab Jaber M.S. or Firas Kobeissy Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Jaber, Z., Aouad, P., Al Medawar, M., Bahmad, H., Abou-Abbass, H., Kobeissy, F. (2016). Application of Systems Biology to Neuroproteomics: The Path to Enhanced Theranostics in Traumatic Brain Injury. In: Kobeissy, F., Dixon, C., Hayes, R., Mondello, S. (eds) Injury Models of the Central Nervous System. Methods in Molecular Biology, vol 1462. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3816-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3816-2_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3814-8

  • Online ISBN: 978-1-4939-3816-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics