Skip to main content

Systematic Review of Traumatic Brain Injury Animal Models

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1462))

Abstract

The goals of this chapter are to provide an introduction into the variety of animal models available for studying traumatic brain injury (TBI) and to provide a concise systematic review of the general materials and methods involved in each model. Materials and methods were obtained from a literature search of relevant peer-reviewed articles. Strengths and weaknesses of each animal choice were presented to include relative cost, anatomical and physiological features, and mechanism of injury desired. Further, a variety of homologous, isomorphic/induced, and predictive animal models were defined, described, and compared with respect to their relative ease of use, characteristics, range, adjustability (e.g., amplitude, duration, mass/size, velocity, and pressure), and rough order of magnitude cost. Just as the primary mechanism of action of TBI is limitless, so are the animal models available to study TBI. With such a wide variety of available animals, types of injury models, along with the research needs, there exists no single “gold standard” model of TBI rendering cross-comparison of data extremely difficult. Therefore, this chapter reflects a representative sampling of the TBI animal models available and is not an exhaustive comparison of every possible model and associated parameters. Throughout this chapter, special considerations for animal choice and TBI animal model classification are discussed. Criteria central to choosing appropriate animal models of TBI include ethics, funding, complexity (ease of use, safety, and controlled access requirements), type of model, model characteristics, and range of control (scope).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ds S (1997) Biological Aspects of Disease. CRC Press, Netherlands

    Google Scholar 

  2. Pinel JPJ (2011) Biopsychology, 8th edn. Allyn & Bacon, Boston

    Google Scholar 

  3. Moshang E, L. G. (2002) A model of penetrating traumatic brain injury using air inflation technique. (Army, U. S. ed., U.S. Army Medical Research and Materiel Command, Ft Detrick, MD.

    Google Scholar 

  4. Cernak I (2005) Animal models of head trauma. NeuroRx 2:410–422

    Article  PubMed  PubMed Central  Google Scholar 

  5. David S, Aguayo AJ (1985) Axonal regeneration after crush injury of rat central nervous system fibres innervating peripheral nerve grafts. Journal of neurocytology 14:1–12

    Article  CAS  PubMed  Google Scholar 

  6. Salzman SK, Faden AI (1994) The Neurobiology of central nervous system trauma. Oxford University Press, New York

    Google Scholar 

  7. Lab Animal's Buyer Guide. LabAnimal.

    Google Scholar 

  8. Povlishock JT, Hayes RL, Michel ME, McIntosh TK (1994) Workshop on animal models of traumatic brain injury. J Neurotrauma 11:723–732

    Article  CAS  PubMed  Google Scholar 

  9. Kilbaugh TJ, Lvova M, Karlsson M, Zhang Z, Leipzig J, Wallace DC, Margulies SS (2015) Peripheral Blood Mitochondrial DNA as a Biomarker of Cerebral Mitochondrial Dysfunction following Traumatic Brain Injury in a Porcine Model. PLoS One 10, e0130927

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sillesen M, Rasmussen LS, Jin G, Jepsen CH, Imam A, Hwabejire JO, Halaweish I, DeMoya M, Velmahos G, Johansson PI, Alam HB (2014) Assessment of coagulopathy, endothelial injury, and inflammation after traumatic brain injury and hemorrhage in a porcine model. J Trauma Acute Care Surg 76:12–19, discussion 19-20

    Article  CAS  PubMed  Google Scholar 

  11. Hwabejire JO, Jin G, Imam AM, Duggan M, Sillesen M, Deperalta D, Jepsen CH, Lu J, Li Y, deMoya MA, Alam HB (2013) Pharmacologic modulation of cerebral metabolic derangement and excitotoxicity in a porcine model of traumatic brain injury and hemorrhagic shock. Surgery 154:234–243

    Article  PubMed  Google Scholar 

  12. Glass TF, Fabian MJ, Schweitzer JB, Weinberg JA, Proctor KG (2001) The impact of hypercarbia on the evolution of brain injury in a porcine model of traumatic brain injury and systemic hemorrhage. J Neurotrauma 18:57–71

    Article  CAS  PubMed  Google Scholar 

  13. Ross AH, Jantz RL, McCormick WF (1998) Cranial thickness in American females and males. Journal of forensic sciences 43:267–272

    Article  CAS  PubMed  Google Scholar 

  14. Smith DF, Jensen PN, Gee AD, Hansen SB, Danielsen E, Andersen F, Saiz PA, Gjedde A (1997) PET neuroimaging with [11C]venlafaxine: serotonin uptake inhibition, biodistribution and binding in living pig brain. European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology 7:195–200

    Article  CAS  Google Scholar 

  15. Roberts T, McGreevy P, Valenzuela M (2010) Human induced rotation and reorganization of the brain of domestic dogs. PLoS One 5, e11946

    Article  PubMed  PubMed Central  Google Scholar 

  16. Russow LM, Theran P (2003) Ethical issues concerning animal research outside the laboratory. ILAR J 44:187–190

    Article  CAS  PubMed  Google Scholar 

  17. McSherry GM (1984) Mapping of cortical histogenesis in the ferret. J Embryol Exp Morphol 81:239–252

    CAS  PubMed  Google Scholar 

  18. Gennarelli TA, Adams JH, Graham DI (1981) Acceleration induced head injury in the monkey. I. The model, its mechanical and physiological correlates. Acta Neuropathol Suppl 7:23–25

    Article  CAS  PubMed  Google Scholar 

  19. Adams JH, Graham DI, Gennarelli TA (1981) Acceleration induced head injury in the monkey. II. Neuropathology. Acta Neuropathol Suppl 7:26–28

    Article  CAS  PubMed  Google Scholar 

  20. Smith DH, Chen XH, Xu BN, McIntosh TK, Gennarelli TA, Meaney DF (1997) Characterization of diffuse axonal pathology and selective hippocampal damage following inertial brain trauma in the pig. J Neuropathol Exp Neurol 56:822–834

    Article  CAS  PubMed  Google Scholar 

  21. USAM Command (1997) Noise limits for military materiels. USAM Command, Redstone Arsenal, AL

    Google Scholar 

  22. Nakagawa A, Fujimura M, Kato K, Okuyama H, Hashimoto T, Takayama K, Tominaga T (2008) Shock wave-induced brain injury in rat: novel traumatic brain injury animal model. Acta Neurochir Suppl 102:421–424

    Article  PubMed  Google Scholar 

  23. Kurioka T, Matsunobu T, Niwa K, Tamura A, Kawauchi S, Satoh Y, Sato S, Shiotani A (2014) Characteristics of laser-induced shock wave injury to the inner ear of rats. J Biomed Opt 19:125001

    Article  PubMed  Google Scholar 

  24. Sato S, Kawauchi S, Okuda W, Nishidate I, Nawashiro H, Tsumatori G (2014) Real-time optical diagnosis of the rat brain exposed to a laser-induced shock wave: observation of spreading depolarization, vasoconstriction and hypoxemia-oligemia. PLoS One 9, e82891

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bauder AR, Ferguson TA (2012) Reproducible mouse sciatic nerve crush and subsequent assessment of regeneration by whole mount muscle analysis. J Vis Exp 60:pii 3606

    Google Scholar 

  26. Vink R, Mullins PG, Temple MD, Bao W, Faden AI (2001) Small shifts in craniotomy position in the lateral fluid percussion injury model are associated with differential lesion development. J Neurotrauma 18:839–847

    Article  CAS  PubMed  Google Scholar 

  27. Gennarelli TA (1994) Animate models of human head injury. J Neurotrauma 11:357–368

    Article  CAS  PubMed  Google Scholar 

  28. D'Ambrosio R, Fender JS, Fairbanks JP, Simon EA, Born DE, Doyle DL, Miller JW (2005) Progression from frontal-parietal to mesial-temporal epilepsy after fluid percussion injury in the rat. Brain 128:174–188

    Article  PubMed  Google Scholar 

  29. Kharatishvili I, Nissinen JP, McIntosh TK, Pitkanen A (2006) A model of posttraumatic epilepsy induced by lateral fluid-percussion brain injury in rats. Neuroscience 140:685–697

    Article  CAS  PubMed  Google Scholar 

  30. Mathew P, Bullock R, Graham DI, Maxwell WL, Teasdale GM, McCulloch J (1996) A new experimental model of contusion in the rat. Histopathological analysis and temporal patterns of cerebral blood flow disturbances. J Neurosurg 85:860–870

    Article  CAS  PubMed  Google Scholar 

  31. Fitch MT, Doller C, Combs CK, Landreth GE, Silver J (1999) Cellular and molecular mechanisms of glial scarring and progressive cavitation: in vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma. J Neurosci 19:8182–8198

    CAS  PubMed  Google Scholar 

  32. Ghirnikar RS, Lee YL, He TR, Eng LF (1996) Chemokine expression in rat stab wound brain injury. J Neurosci Res 46:727–733

    Article  CAS  PubMed  Google Scholar 

  33. Burger R, Bendszus M, Vince GH, Roosen K, Marmarou A (2002) A new reproducible model of an epidural mass lesion in rodents. Part I: characterization by neurophysiological monitoring, magnetic resonance imaging, and histopathological analysis. J Neurosurg 97: 1410–1418

    Article  PubMed  Google Scholar 

  34. Carey ME (1995) Experimental missile wounding of the brain. Neurosurg Clin N Am 6:629–642

    CAS  PubMed  Google Scholar 

  35. Carey ME, Sarna GS, Farrell JB (1990) Brain edema following an experimental missile wound to the brain. J Neurotrauma 7: 13–20

    Article  CAS  PubMed  Google Scholar 

  36. Finnie JW (1993) Pathology of experimental traumatic craniocerebral missile injury. J Comp Pathol 108:93–101

    Article  CAS  PubMed  Google Scholar 

  37. Lighthall JW, Dixon CE, Anderson TE (1989) Experimental models of brain injury. J Neurotrauma 6:83–97

    Article  CAS  PubMed  Google Scholar 

  38. Marmarou A, Foda MA, van den Brink W, Campbell J, Kita H, Demetriadou K (1994) A new model of diffuse brain injury in rats. Part I: pathophysiology and biomechanics. J Neurosurg 80:291–300

    Article  CAS  PubMed  Google Scholar 

  39. Cernak I, Vink R, Zapple DN, Cruz MI, Ahmed F, Chang T, Fricke ST, Faden AI (2004) The pathobiology of moderate diffuse traumatic brain injury as identified using a new experimental model of injury in rats. Neurobiol Dis 17:29–43

    Article  CAS  PubMed  Google Scholar 

  40. Foda MA, Marmarou A (1994) A new model of diffuse brain injury in rats. Part II: morphological characterization. J Neurosurg 80: 301–313

    Article  CAS  PubMed  Google Scholar 

Download references

Disclaimer

The material presented in this chapter does not necessarily represent the views or opinions of Booz Allen Hamilton.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen W. Phipps .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Phipps, H.W. (2016). Systematic Review of Traumatic Brain Injury Animal Models. In: Kobeissy, F., Dixon, C., Hayes, R., Mondello, S. (eds) Injury Models of the Central Nervous System. Methods in Molecular Biology, vol 1462. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3816-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3816-2_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3814-8

  • Online ISBN: 978-1-4939-3816-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics