Skip to main content

Determination of Vascular Reactivity of Middle Cerebral Arteries from Stroke and Spinal Cord Injury Animal Models Using Pressure Myography

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1462))

Abstract

Stroke and other neurovascular derangements are main causes of global death. They, along with spinal cord injuries, are responsible for being the principal cause of disability due to neurological and cognitive problems. These problems then lead to a burden on scarce financial resources and societal care facilities as well as have a profound effect on patients’ families. The mechanism of action in these debilitating diseases is complex and unclear. An important component of these problems arises from derangement of blood vessels, such as blockage due to clotting/embolism, endothelial dysfunction, and overreactivity to contractile agents, as well as alteration in endothelial permeability. Moreover, the cerebro-vasculature (large vessels and arterioles) is involved in regulating blood flow by facilitating auto-regulatory processes. Moreover, the anterior (middle cerebral artery and the surrounding region) and posterior (basilar artery and its immediate locality) regions of the brain play a significant role in triggering the pathological progression of ischemic stroke particularly due to inflammatory activity and oxidative stress. Interestingly, modifiable and non-modifiable cardiovascular risk factors are responsible for driving ischemic and hemorrhagic stroke and spinal cord injury. There are different stroke animal models to examine the pathophysiology of middle cerebral and basilar arteries. In this context, arterial myography offers an opportunity to determine the etiology of vascular dysfunction in these diseases. Herein, we describe the technique of pressure myography to examine the reactivity of cerebral vessels to contractile and vasodilator agents and a prelude to stroke and spinal cord injury.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Mackay J, Mensah G (2004) The atlas of heart disease and stroke, 1st edn. World Health Organization, Geneva

    Google Scholar 

  2. Krishnamurthi RV, Feigin VL, Forouzanfar MH, Mensah GA, Connor M, Bennett DA, Moran AE, Sacco RL, Anderson LM, Truelsen T, O’Donnell M, Venketasubramanian N, Barker-Collo S, Lawes CM, Wang W, Shinohara Y, Witt E, Ezzati M, Naghavi M, Murray C (2013) Global and regional burden of first-ever ischaemic and haemorrhagic stroke during 1990-2010: findings from the Global Burden of Disease Study 2010. Lancet Glob Health 1:e259–e281

    Article  PubMed  PubMed Central  Google Scholar 

  3. Feigin VL, Forouzanfar MH, Krishnamurthi R, Mensah GA, Connor M, Bennett DA, Moran AE, Sacco RL, Anderson L, Truelsen T, O’Donnell M, Venketasubramanian N, Barker-Collo S, Lawes CM, Wang W, Shinohara Y, Witt E, Ezzati M, Naghavi M, Murray C (2014) Global and regional burden of stroke during 1990-2010: findings from the Global Burden of Disease Study 2010. Lancet 383:245–254

    Article  PubMed  PubMed Central  Google Scholar 

  4. Moskowitz MA, Lo EH, Iadecola C (2010) The science of stroke: mechanisms in search of treatments. Neuron 67:181–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hollier LH, Money SR, Naslund TC, Proctor CD Sr, Buhrman WC, Marino RJ, Harmon DE, Kazmier FJ (1992) Risk of spinal cord dysfunction in patients undergoing thoracoabdominal aortic replacement. Am J Surg 164:210–213, discussion 213-214

    Article  CAS  PubMed  Google Scholar 

  6. Garshick E, Kelley A, Cohen SA, Garrison A, Tun CG, Gagnon D, Brown R (2005) A prospective assessment of mortality in chronic spinal cord injury. Spinal Cord 43:408–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bell JW, Chen D, Bahls M, Newcomer SC (2011) Evidence for greater burden of peripheral arterial disease in lower extremity arteries of spinal cord-injured individuals. Am J Physiol Heart Circ Physiol 301:H766–H772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Criqui MH, Langer RD, Fronek A, Feigelson HS, Klauber MR, McCann TJ, Browner D (1992) Mortality over a period of 10 years in patients with peripheral arterial disease. N Engl J Med 326:381–386

    Article  CAS  PubMed  Google Scholar 

  9. Wu JC, Chen YC, Liu L, Chen TJ, Huang WC, Cheng H, Tung-Ping S (2012) Increased risk of stroke after spinal cord injury: a nationwide 4-year follow-up cohort study. Neurology 78:1051–1057

    Article  PubMed  Google Scholar 

  10. Macrae IM (2011) Preclinical stroke research--advantages and disadvantages of the most common rodent models of focal ischaemia. Br J Pharmacol 164:1062–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Flynn RW, MacWalter RS, Doney AS (2008) The cost of cerebral ischaemia. Neuropharmacology 55:250–256

    Article  CAS  PubMed  Google Scholar 

  12. Olesen J, Gustavsson A, Svensson M, Wittchen HU, Jonsson B (2012) The economic cost of brain disorders in Europe. Eur J Neurol 19:155–162

    Article  CAS  PubMed  Google Scholar 

  13. Levick RJ (2009) An introduction to cardiovascular physiology, 5th edn. CRC Press Taylor and Francis Group, Boca Raton, FL

    Google Scholar 

  14. Cipolla M (2009) The cerebral circulation. In: Granger DN, Granger JP (eds) Colloquium series on integrated systems physiology: from molecular to function to disease. Morgan & Claypool Life Sciences, San Rafael, CA, pp 1–59

    Google Scholar 

  15. Faraci FM (2011) Protecting against vascular disease in brain. Am J Physiol Heart Circ Physiol 300:H1566–H1582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sehba FA, Hou J, Pluta RM, Zhang JH (2012) The importance of early brain injury after subarachnoid hemorrhage. Prog Neurobiol 97:14–37

    Article  PubMed  PubMed Central  Google Scholar 

  17. Popa C, Popa F, Grigorean VT, Onose G, Sandu AM, Popescu M, Burnei G, Strambu V, Sinescu C (2010) Vascular dysfunctions following spinal cord injury. J Med Life 3:275–285

    PubMed  PubMed Central  Google Scholar 

  18. Sharma HS (2011) Early microvascular reactions and blood-spinal cord barrier disruption are instrumental in pathophysiology of spinal cord injury and repair: novel therapeutic strategies including nanowired drug delivery to enhance neuroprotection. J Neural Transm 118:155–176

    Article  CAS  PubMed  Google Scholar 

  19. Gorelick PB, Scuteri A, Black SE, Decarli C, Greenberg SM, Iadecola C, Launer LJ, Laurent S, Lopez OL, Nyenhuis D, Petersen RC, Schneider JA, Tzourio C, Arnett DK, Bennett DA, Chui HC, Higashida RT, Lindquist R, Nilsson PM, Roman GC, Sellke FW, Seshadri S (2011) Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association. Stroke 42:2672–2713

    Article  PubMed  PubMed Central  Google Scholar 

  20. Henninger N, Eberius KH, Sicard KM, Kollmar R, Sommer C, Schwab S, Schabitz WR (2006) A new model of thromboembolic stroke in the posterior circulation of the rat. J Neurosci Methods 156:1–9

    Article  PubMed  Google Scholar 

  21. Lekic T, Ani C (2012) Posterior circulation stroke: animal models and mechanism of disease. J Biomed Biotechnol 2012:587590

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rodrigues SF, Granger DN (2014) Leukocyte-mediated tissue injury in ischemic stroke. Curr Med Chem 21:2130–2137

    Article  CAS  PubMed  Google Scholar 

  23. Hankey GJ (2006) Potential new risk factors for ischemic stroke: what is their potential? Stroke 37:2181–2188

    Article  PubMed  Google Scholar 

  24. McArthur K, Lees KR (2010) Advances in emerging therapies 2009. Stroke 41:e67–e70

    Article  PubMed  Google Scholar 

  25. Bos MJ, Koudstaal PJ, Hofman A, Ikram MA (2014) Modifiable etiological factors and the burden of stroke from the Rotterdam study: a population-based cohort study. PLoS Med 11:e1001634

    Article  PubMed  PubMed Central  Google Scholar 

  26. Filosa JA, Iddings JA (2013) Astrocyte regulation of cerebral vascular tone. Am J Physiol Heart Circ Physiol 305:H609–H619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lees KR, Bluhmki E, von Kummer R, Brott TG, Toni D, Grotta JC, Albers GW, Kaste M, Marler JR, Hamilton SA, Tilley BC, Davis SM, Donnan GA, Hacke W, Allen K, Mau J, Meier D, del Zoppo G, De Silva DA, Butcher KS, Parsons MW, Barber PA, Levi C, Bladin C, Byrnes G (2010) Time to treatment with intravenous alteplase and outcome in stroke: an updated pooled analysis of ECASS, ATLANTIS, NINDS, and EPITHET trials. Lancet 375:1695–1703

    Article  CAS  PubMed  Google Scholar 

  28. Dhillon S (2012) Alteplase: a review of its use in the management of acute ischaemic stroke. CNS Drugs 26:899–926

    Article  CAS  PubMed  Google Scholar 

  29. Volpe M, Iaccarino G, Vecchione C, Rizzoni D, Russo R, Rubattu S, Condorelli G, Ganten U, Ganten D, Trimarco B, Lindpaintner K (1996) Association and cosegregation of stroke with impaired endothelium-dependent vasorelaxation in stroke prone, spontaneously hypertensive rats. J Clin Invest 98:256–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fassbender JM, Whittemore SR, Hagg T (2011) Targeting microvasculature for neuroprotection after SCI. Neurotherapeutics 8:240–251

    Article  PubMed  PubMed Central  Google Scholar 

  31. Toda N, Ayajiki K, Okamura T (2009) Cerebral blood flow regulation by nitric oxide: recent advances. Pharmacol Rev 61:62–97

    Article  CAS  PubMed  Google Scholar 

  32. Mautes AE, Weinzierl MR, Donovan F, Noble LJ (2000) Vascular events after spinal cord injury: contribution to secondary pathogenesis. Phys Ther 80:673–687

    CAS  PubMed  Google Scholar 

  33. Sinescu C, Popa F, Grigorean VT, Onose G, Sandu AM, Popescu M, Burnei G, Strambu V, Popa C (2010) Molecular basis of vascular events following spinal cord injury. J Med Life 3:254–261

    PubMed  PubMed Central  Google Scholar 

  34. Pires PW, Girgla SS, McClain JL, Kaminski NE, van Rooijen N, Dorrance AM (2013) Improvement in middle cerebral artery structure and endothelial function in stroke-prone spontaneously hypertensive rats after macrophage depletion. Microcirculation 20:650–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Durukan A, Tatlisumak T (2007) Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacol Biochem Behav 87:179–197

    Article  CAS  PubMed  Google Scholar 

  36. Hossmann KA (2008) Cerebral ischemia: models, methods and outcomes. Neuropharmacology 55:257–270

    Article  CAS  PubMed  Google Scholar 

  37. Cheriyan T, Ryan DJ, Weinreb JH, Cheriyan J, Paul JC, Lafage V, Kirsch T, Errico TJ (2014) Spinal cord injury models: a review. Spinal Cord 52:588–595

    Article  CAS  PubMed  Google Scholar 

  38. Strbian D, Durukan A, Tatlisumak T (2008) Rodent models of hemorrhagic stroke. Curr Pharm Des 14:352–358

    Article  CAS  PubMed  Google Scholar 

  39. Rummery NM, Tripovic D, McLachlan EM, Brock JA (2010) Sympathetic vasoconstriction is potentiated in arteries caudal but not rostral to a spinal cord transection in rats. J Neurotrauma 27:2077–2089

    Article  PubMed  Google Scholar 

  40. Durukan A, Strbian D, Tatlisumak T (2008) Rodent models of ischemic stroke: a useful tool for stroke drug development. Curr Pharm Des 14:359–370

    Article  CAS  PubMed  Google Scholar 

  41. Anwar MA, Schwab M, Poston L, Nathanielsz PW (1999) Betamethasone-mediated vascular dysfunction and changes in hematological profile in the ovine fetus. Am J Physiol 276:H1137–H1143

    CAS  PubMed  Google Scholar 

  42. Eid AH, Maiti K, Mitra S, Chotani MA, Flavahan S, Bailey SR, Thompson-Torgerson CS, Flavahan NA (2007) Estrogen increases smooth muscle expression of alpha2C-adrenoceptors and cold-induced constriction of cutaneous arteries. Am J Physiol Heart Circ Physiol 293:H1955–H1961

    Article  CAS  PubMed  Google Scholar 

  43. Kuraoka M, Furuta T, Matsuwaki T, Omatsu T, Ishii Y, Kyuwa S, Yoshikawa Y (2009) Direct experimental occlusion of the distal middle cerebral artery induces high reproducibility of brain ischemia in mice. Exp Anim 58:19–29

    Article  CAS  PubMed  Google Scholar 

  44. Myers SA, DeVries WH, Andres KR, Gruenthal MJ, Benton RL, Hoying JB, Hagg T, Whittemore SR (2011) CD47 knockout mice exhibit improved recovery from spinal cord injury. Neurobiol Dis 42:21–34

    Article  CAS  PubMed  Google Scholar 

  45. Cheng MH, Lin LL, Liu JY, Liu AJ (2012) The outcomes of stroke induced by middle cerebral artery occlusion in different strains of mice. CNS Neurosci Ther 18:794–795

    Article  PubMed  Google Scholar 

  46. Kawaguchi M, Furuya H, Patel PM (2005) Neuroprotective effects of anesthetic agents. J Anesth 19:150–156

    Article  PubMed  Google Scholar 

  47. Braeuninger S, Kleinschnitz C (2009) Rodent models of focal cerebral ischemia: procedural pitfalls and translational problems. Exp Transl Stroke Med 1:8

    Article  PubMed  PubMed Central  Google Scholar 

  48. Traystman RJ (2010) Effect of anesthesia in stroke models. In: Dirnagl U (ed) Rodent models of stroke. Humana Press, Totowa, NJ, p 285

    Google Scholar 

  49. Altay O, Hasegawa Y, Sherchan P, Suzuki H, Khatibi NH, Tang J, Zhang JH (2012) Isoflurane delays the development of early brain injury after subarachnoid hemorrhage through sphingosine-related pathway activation in mice. Crit Care Med 40:1908–1913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Osol G, Cipolla M, Knutson S (1989) A new method for mechanically denuding the endothelium of small (50-150 microns) arteries with a human hair. Blood Vessels 26:320–324

    CAS  PubMed  Google Scholar 

  51. Anwar MA, Ford WR, Herbert AA, Broadley KJ (2013) Signal transduction and modulating pathways in tryptamine-evoked vasopressor responses of the rat isolated perfused mesenteric bed. Vascul Pharmacol 58:140–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This publication was made possible by grant # NPRP 4-571-3-171 and NPRP 5-409-3-112 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Conflict of Interest

There are no potential conflicting interests to declare in the preparation of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali H. Eid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Anwar, M.A., Eid, A.H. (2016). Determination of Vascular Reactivity of Middle Cerebral Arteries from Stroke and Spinal Cord Injury Animal Models Using Pressure Myography. In: Kobeissy, F., Dixon, C., Hayes, R., Mondello, S. (eds) Injury Models of the Central Nervous System. Methods in Molecular Biology, vol 1462. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3816-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3816-2_33

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3814-8

  • Online ISBN: 978-1-4939-3816-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics