Skip to main content

Closed-Head TBI Model of Multiple Morbidity

  • Protocol
  • First Online:
Injury Models of the Central Nervous System

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1462))

Abstract

Successful therapy for TBI disabilities awaits refinement in the understanding of TBI neurobiology, quantitative measurement of treatment-induced incremental changes in recovery trajectories, and effective translation to human TBI using quantitative methods and protocols that were effective to monitor recovery in preclinical models. Details of the specific neurobiology that underlies these injuries and effective quantitation of treatment-induced changes are beginning to emerge utilizing a variety of preclinical and clinical models (for reviews see (Morales et al., Neuroscience 136:971–989, 2005; Fujimoto et al., Neurosci Biobehav Rev 28:365–378, 2004; Cernak, NeuroRx 2:410–422, 2005; Smith et al., J Neurotrauma 22:1485–1502, 2005; Bose et al., J Neurotrauma 30:1177–1191, 2013; Xiong et al., Nat Rev Neurosci 14:128–142, 2013; Xiong et al., Expert Opin Emerg Drugs 14:67–84, 2009; Johnson et al., Handb Clin Neurol 127:115–128, 2015; Bose et al., Brain neurotrauma: molecular, neuropsychological, and rehabilitation aspects, CRC Press/Taylor & Francis, Boca Raton, 2015)). Preclinical models of TBI, essential for the efficient study of TBI neurobiology, benefit from the setting of controlled injury and optimal opportunities for biometric quantitation of injury and treatment-induced changes in the trajectories of disability. Several preclinical models are currently used, and each offer opportunities for study of different aspects of TBI primary and secondary injuries (for review see (Morales et al., Neuroscience 136:971–989, 2005; Xiong et al., Nat Rev Neurosci 14:128–142, 2013; Xiong et al., Expert Opin Emerg Drugs 14:67–84, 2009; Johnson et al., Handb Clin Neurol 127:115–128, 2015; Dixon et al., J Neurotrauma 5:91–104, 1988)). The closed-head, impact-acceleration model of TBI designed by Marmarou et al., 1994 (J Neurosurg 80:291–300, 1994), when used to produce mild to moderate TBI, produces diffuse axonal injuries without significant additional focal injuries of the brain (Morales et al., Neuroscience 136:971–989, 2005; Foda and Marmarou, J Neurosurg 80:301–313, 1994; Kallakuri et al., Exp Brain Res 148:419–424, 2003). Accordingly, use of this preclinical model offers an opportunity for (a) gaining a greater understanding of the relationships of TBI induced diffuse axonal injuries and associated long term disabilities, and (b) to provide a platform for quantitative assessment of treatment interactions upon the trajectories of TBI-induced disabilities. Using the impact acceleration closed head TBI model to induce mild/moderate injuries in the rat, we have observed and quantitated multiple morbidities commonly observed following TBI in humans (Bose et al., J Neurotrauma 30:1177–1191, 2013). This chapter describes methods and protocols used for TBI-induced multiple morbidity involving cognitive dysfunction, balance instability, spasticity and gait, and anxiety-like disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xiong Y, Mahmood A, Chopp M (2013) Animal models of traumatic brain injury. Nat Rev Neurosci 14:128–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zitnay GA, Zitnay KM, Povlishock JT, Hall ED, Marion DW, Trudel T, Zafonte RD, Zasler N, Nidiffer FD, DaVanzo J, Barth JT (2008) Traumatic brain injury research priorities: the Conemaugh International Brain Injury Symposium. J Neurotrauma 25:1135–1152

    Article  PubMed  Google Scholar 

  3. Ling H, Hardy J, Zetterberg H (2015) Neurological consequences of traumatic brain injuries in sports. Mol Cell Neurosci 66:114–122

    Article  CAS  PubMed  Google Scholar 

  4. Bose P, Hou J, Nelson R, Nissim N, Parmer R, Keener J, Wacnik PW, Thompson FJ (2013) Effects of acute intrathecal baclofen in an animal model of TBI-induced spasticity, cognitive, and balance disabilities. J Neurotrauma 30:1177–1191

    Article  PubMed  Google Scholar 

  5. Johnson VE, Stewart W, Smith DH (2013) Axonal pathology in traumatic brain injury. Exp Neurol 246:35–43

    Article  CAS  PubMed  Google Scholar 

  6. Adams JH, Graham DI, Gennarelli TA, Maxwell WL (1991) Diffuse axonal injury in non-missile head injury. J Neurol Neurosurg Psychiatry 54:481–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Povlishock JT, Pettus EH (1996) Traumatically induced axonal damage: evidence for enduring changes in axolemmal permeability with associated cytoskeletal change. Acta Neurochir Suppl 66:81–86

    CAS  PubMed  Google Scholar 

  8. Smith DH, Meaney DF, Shull WH (2003) Diffuse axonal injury in head trauma. J Head Trauma Rehabil 18:307–316

    Article  PubMed  Google Scholar 

  9. Buki A, Povlishock JT (2006) All roads lead to disconnection?—Traumatic axonal injury revisited. Acta Neurochir (Wien) 148:181–193, discussion 193-184

    Article  CAS  Google Scholar 

  10. Morales DM, Marklund N, Lebold D, Thompson HJ, Pitkanen A, Maxwell WL, Longhi L, Laurer H, Maegele M, Neugebauer E, Graham DI, Stocchetti N, McIntosh TK (2005) Experimental models of traumatic brain injury: do we really need to build a better mousetrap? Neuroscience 136:971–989

    Article  CAS  PubMed  Google Scholar 

  11. Fujimoto ST, Longhi L, Saatman KE, Conte V, Stocchetti N, McIntosh TK (2004) Motor and cognitive function evaluation following experimental traumatic brain injury. Neurosci Biobehav Rev 28:365–378

    Article  PubMed  Google Scholar 

  12. Cernak I (2005) Animal models of head trauma. NeuroRx 2:410–422

    Article  PubMed  PubMed Central  Google Scholar 

  13. Smith DC, Modglin AA, Roosevelt RW, Neese SL, Jensen RA, Browning RA, Clough RW (2005) Electrical stimulation of the vagus nerve enhances cognitive and motor recovery following moderate fluid percussion injury in the rat. J Neurotrauma 22:1485–1502

    Article  PubMed  PubMed Central  Google Scholar 

  14. Xiong Y, Mahmood A, Chopp M (2009) Emerging treatments for traumatic brain injury. Expert Opin Emerg Drugs 14:67–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Johnson VE, Meaney DF, Cullen DK, Smith DH (2015) Animal models of traumatic brain injury. Handb Clin Neurol 127:115–128

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bose P, Hou J, Thompson FJ (2015) Traumatic brain injury (TBI)-induced spasticity: neurobiology, treatment, and rehabilitation. In: Kobeissy FH (ed) Brain neurotrauma: molecular, neuropsychological, and rehabilitation aspects. CRC Press/Taylor & Francis, Boca Raton

    Google Scholar 

  17. Dixon CE, Lighthall JW, Anderson TE (1988) Physiologic, histopathologic, and cineradiographic characterization of a new fluid-percussion model of experimental brain injury in the rat. J Neurotrauma 5:91–104

    Article  CAS  PubMed  Google Scholar 

  18. Marmarou A, Foda MA, van den Brink W, Campbell J, Kita H, Demetriadou K (1994) A new model of diffuse brain injury in rats. Part I: pathophysiology and biomechanics. J Neurosurg 80:291–300

    Article  CAS  PubMed  Google Scholar 

  19. Foda MA, Marmarou A (1994) A new model of diffuse brain injury in rats. Part II: morphological characterization. J Neurosurg 80: 301–313

    Article  CAS  PubMed  Google Scholar 

  20. Kallakuri S, Cavanaugh JM, Ozaktay AC, Takebayashi T (2003) The effect of varying impact energy on diffuse axonal injury in the rat brain: a preliminary study. Exp Brain Res 148:419–424

    PubMed  Google Scholar 

  21. Bose P, Parmer R, Thompson FJ (2002) Velocity-dependent ankle torque in rats after contusion injury of the midthoracic spinal cord: time course. J Neurotrauma 19: 1231–1249

    Article  PubMed  Google Scholar 

  22. Thompson FJ, Browd CR, Carvalho PM, Hsiao J (1996) Velocity-dependent ankle torque in the normal rat. Neuroreport 7: 2273–2276

    CAS  PubMed  Google Scholar 

  23. Hamm RJ, Dixon CE, Gbadebo DM, Singha AK, Jenkins LW, Lyeth BG, Hayes RL (1992) Cognitive deficits following traumatic brain injury produced by controlled cortical impact. J Neurotrauma 9:11–20

    Article  CAS  PubMed  Google Scholar 

  24. Hamm RJ, Lyeth BG, Jenkins LW, O’Dell DM, Pike BR (1993) Selective cognitive impairment following traumatic brain injury in rats. Behav Brain Res 59:169–173

    Article  CAS  PubMed  Google Scholar 

  25. Hamm RJ, Temple MD, Pike BR, Ellis EF (1996) The effect of postinjury administration of polyethylene glycol-conjugated superoxide dismutase (pegorgotein, Dismutec) or lidocaine on behavioral function following fluid-percussion brain injury in rats. J Neurotrauma 13:325–332

    Article  CAS  PubMed  Google Scholar 

  26. Hamm RJ (2001) Neurobehavioral assessment of outcome following traumatic brain injury in rats: an evaluation of selected measures. J Neurotrauma 18:1207–1216

    Article  CAS  PubMed  Google Scholar 

  27. Wang DC, Bose P, Parmer R, Thompson FJ (2002) Chronic intrathecal baclofen treatment and withdrawal: I. Changes in ankle torque and hind limb posture in normal rats. J Neurotrauma 19:875–886

    Article  PubMed  Google Scholar 

  28. Hamers FP, Lankhorst AJ, van Laar TJ, Veldhuis WB, Gispen WH (2001) Automated quantitative gait analysis during overground locomotion in the rat: its application to spinal cord contusion and transection injuries. J Neurotrauma 18:187–201

    Article  CAS  PubMed  Google Scholar 

  29. Hamers FP, Koopmans GC, Joosten EA (2006) CatWalk-assisted gait analysis in the assessment of spinal cord injury. J Neurotrauma 23:537–548

    Article  PubMed  Google Scholar 

  30. Betts RP, Paschalis C, Jarratt JA, Jenner FA (1978) Nerve fibre refractory period in patients treated with rubidium and lithium. J Neurol Neurosurg Psychiatry 41:791–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Clarke KA (1992) A technique for the study of spatiotemporal aspects of paw contact patterns, applied to rats treated with a Trh analog. Behav Res Method Instrum 24:407–411

    Article  Google Scholar 

  32. Gu X, Staines WA, Fortier PA (1999) Quantitative analyses of neurons projecting to primary motor cortex zones controlling limb movements in the rat. Brain Res 835:175–187

    Article  CAS  PubMed  Google Scholar 

  33. Thompson FJ, Reier PJ, Lucas CC, Parmer R (1992) Altered patterns of reflex excitability subsequent to contusion injury of the rat spinal cord. J Neurophysiol 68:1473–1486

    CAS  PubMed  Google Scholar 

  34. Thompson FJ, Reier PJ, Parmer R, Lucas CC (1993) Inhibitory control of reflex excitability following contusion injury and neural tissue transplantation. Adv Neurol 59:175–184

    CAS  PubMed  Google Scholar 

  35. Maruichi K, Kuroda S, Chiba Y, Hokari M, Shichinohe H, Hida K, Iwasaki Y (2009) Graded model of diffuse axonal injury for studying head injury-induced cognitive dysfunction in rats. Neuropathology 29:132–139

    Article  PubMed  Google Scholar 

  36. Tolias CM, Bullock MR (2004) Critical appraisal of neuroprotection trials in head injury: what have we learned? NeuroRx 1:71–79

    Article  PubMed  PubMed Central  Google Scholar 

  37. Stein DG (2015) Embracing failure: what the phase III progesterone studies can teach about TBI clinical trials. Brain Inj 29:1259–1272

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Floyd J. Thompson Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Thompson, F.J., Hou, J., Bose, P.K. (2016). Closed-Head TBI Model of Multiple Morbidity. In: Kobeissy, F., Dixon, C., Hayes, R., Mondello, S. (eds) Injury Models of the Central Nervous System. Methods in Molecular Biology, vol 1462. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3816-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3816-2_28

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3814-8

  • Online ISBN: 978-1-4939-3816-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics