Skip to main content

Microdialysis as Clinical Evaluation of Therapeutic Hypothermia in Rat Subdural Hematoma Model

  • Protocol
  • First Online:
Injury Models of the Central Nervous System

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1462))

Abstract

Cerebral microdialysis (MD) is a fine laboratory technique which has been established for studying physiological, pharmacological, and pathological changes in the experimental studies of traumatic brain injury (TBI). This technique has also been well translated and widely applied to clinical bedside monitoring to provide pathophysiological analysis in severe TBI patients. The MD technique is thus well suited for straightforward translation from basic science to clinical application.

In this chapter, we describe our evaluation of MD method in acute subdural hematoma (ASDH) rat model. With 100 kDa cut-off microdialysis membrane, we could measure several biomarkers such as ubiquitin carboxy hydrolase L1 (UCH-L1), a neuronal marker and glial fibrillary acidic protein (GFAP), and a glial marker in extracellular fluid. In this experiment, we could detect that the peak of extracellular UCH-L1 in the early hypothermia group was significantly lower than in the normothermia group. Also, in the late phase of reperfusion (>2.5 h after decompression), extracellular GFAP in the early hypothermia group was lower than in the normothermia. These data thus suggested that early, preoperatively induced hypothermia could mediate the reduction of neuronal and glial damage in the reperfusion phase of ischemia/reperfusion brain injury.

Microdialysis allows for the direct measurement of extracellular molecules in an attempt to characterize metabolic derangements before they become clinically relevant. Advancements in technology have allowed for the bedside assay of multiple markers of ischemia and metabolic dysfunction, and the applications for traumatic brain injury have been well established. As clinicians become more comfortable with these tools their widespread use and potential for clinical impact with continue to rise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bito L, Davson H, Levin E, Murray M, Snider N (1966) The concentrations of free amino acids and other electrolytes in cerebrospinal fluid, in vivo dialysate of brain, and blood plasma of the dog. J Neurochem 13:1057–1067

    Article  CAS  PubMed  Google Scholar 

  2. Tossman U, Ungerstedt U (1986) Microdialysis in the study of extracellular levels of amino acids in the rat brain. Acta Physiol Scand 128:9–14

    Article  CAS  PubMed  Google Scholar 

  3. Dunn IF, Ellegala DB, Kim DH, Litvack ZN (2006) Neuromonitoring in neurological critical care. Neurocrit Care 4:83–92

    Article  PubMed  Google Scholar 

  4. Kissinger PT, Shoup RE (1990) Optimization of LC apparatus for determinations in neurochemistry with an emphasis on microdialysis samples. J Neurosci Methods 34:3–10

    Article  CAS  PubMed  Google Scholar 

  5. Allison LA, Mayer GS, Shoup RE (1984) o-Phthalaldehyde derivatives of amines for high-speed liquid chromatography/electrochemistry. Anal Chem 56:1089–1096

    Article  CAS  PubMed  Google Scholar 

  6. Damsma G, Westerink BH, de Vries JB, Van den Berg CJ, Horn AS (1987) Measurement of acetylcholine release in freely moving rats by means of automated intracerebral dialysis. J Neurochem 48:1523–1528

    Article  CAS  PubMed  Google Scholar 

  7. Kontur P, Dawson R, Monjan A (1984) Manipulation of mobile phase parameters for the HPLC separation of endogenous monoamines in rat brain tissue. J Neurosci Methods 11:5–18

    Article  CAS  PubMed  Google Scholar 

  8. Benveniste H, Diemer NH (1988) Early postischemic 45Ca accumulation in rat dentate hilus. J Cereb Blood Flow Metab 8:713–719

    Article  CAS  PubMed  Google Scholar 

  9. Bramlett HM, Green EJ, Dietrich WD, Busto R, Globus MY, Ginsberg MD (1995) Posttraumatic brain hypothermia provides protection from sensorimotor and cognitive behavioral deficits. J Neurotrauma 12:289–298

    Article  CAS  PubMed  Google Scholar 

  10. Dietrich WD, Alonso O, Busto R, Globus MY, Ginsberg MD (1994) Post-traumatic brain hypothermia reduces histopathological damage following concussive brain injury in the rat. Acta Neuropathol 87:250–258

    Article  CAS  PubMed  Google Scholar 

  11. Dietrich WD, Bramlett HM (2010) The evidence for hypothermia as a neuroprotectant in traumatic brain injury. Neurotherapeutics 7:43–50

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jia F, Mao Q, Liang YM, Jiang JY (2009) Effect of post-traumatic mild hypothermia on hippocampal cell death after traumatic brain injury in rats. J Neurotrauma 26:243–252

    Article  PubMed  Google Scholar 

  13. Okauchi M, Kawai N, Nakamura T, Kawanishi M, Nagao S (2002) Effects of mild hypothermia and alkalizing agents on brain injuries in rats with acute subdural hematomas. J Neurotrauma 19:741–751

    Article  PubMed  Google Scholar 

  14. Karibe H, Zarow GJ, Graham SH, Weinstein PR (1994) Mild intraischemic hypothermia reduces postischemic hyperperfusion, delayed postischemic hypoperfusion, blood-brain barrier disruption, brain edema, and neuronal damage volume after temporary focal cerebral ischemia in rats. J Cereb Blood Flow Metab 14:620–627

    Article  CAS  PubMed  Google Scholar 

  15. Kawai N, Nakamura T, Okauchi M, Nagao S (2000) Effects of hypothermia on intracranial pressure and brain edema formation: studies in a rat acute subdural hematoma model. J Neurotrauma 17:193–202

    Article  CAS  PubMed  Google Scholar 

  16. Clifton GL, Miller ER, Choi SC, Levin HS, McCauley S, Smith KR Jr, Muizelaar JP, Wagner FC Jr, Marion DW, Luerssen TG, Chesnut RM, Schwartz M (2001) Lack of effect of induction of hypothermia after acute brain injury. N Engl J Med 344:556–563

    Article  CAS  PubMed  Google Scholar 

  17. Jiang JY (2009) Clinical study of mild hypothermia treatment for severe traumatic brain injury. J Neurotrauma 26:399–406

    Article  PubMed  Google Scholar 

  18. Marion D, Bullock MR (2009) Current and future role of therapeutic hypothermia. J Neurotrauma 26:455–467

    Article  PubMed  Google Scholar 

  19. McIntyre LA, Fergusson DA, Hebert PC, Moher D, Hutchison JS (2003) Prolonged therapeutic hypothermia after traumatic brain injury in adults: a systematic review. JAMA 289:2992–2999

    Article  PubMed  Google Scholar 

  20. Shann F (2003) Hypothermia for traumatic brain injury: how soon, how cold, and how long? Lancet 362:1950–1951

    Article  PubMed  Google Scholar 

  21. Timmons SD (2010) Current trends in neurotrauma care. Crit Care Med 38:S431–S444

    Article  PubMed  Google Scholar 

  22. Clifton GL, Valadka A, Zygun D, Coffey CS, Drever P, Fourwinds S, Janis LS, Wilde E, Taylor P, Harshman K, Conley A, Puccio A, Levin HS, McCauley SR, Bucholz RD, Smith KR, Schmidt JH, Scott JN, Yonas H, Okonkwo DO (2011) Very early hypothermia induction in patients with severe brain injury (the National Acute Brain Injury Study: Hypothermia II): a randomised trial. Lancet Neurol 10:131–139

    Article  PubMed  Google Scholar 

  23. Wilberger JE Jr, Harris M, Diamond DL (1991) Acute subdural hematoma: morbidity, mortality, and operative timing. J Neurosurg 74:212–218

    Article  PubMed  Google Scholar 

  24. Massaro F, Lanotte M, Faccani G, Triolo C (1996) One hundred and twenty-seven cases of acute subdural haematoma operated on. Correlation between CT scan findings and outcome. Acta Neurochir 138:185–191

    Article  CAS  PubMed  Google Scholar 

  25. Wilberger JE Jr, Harris M, Diamond DL (1990) Acute subdural hematoma: morbidity and mortality related to timing of operative intervention. J Trauma 30:733–736

    Article  PubMed  Google Scholar 

  26. Liu MC, Akinyi L, Scharf D, Mo J, Larner SF, Muller U, Oli MW, Zheng W, Kobeissy F, Papa L, Lu XC, Dave JR, Tortella FC, Hayes RL, Wang KK (2010) Ubiquitin C-terminal hydrolase-L1 as a biomarker for ischemic and traumatic brain injury in rats. Eur J Neurosci 31:722–732

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mondello S, Jeromin A, Buki A, Bullock R, Czeiter E, Kovacs N, Barzo P, Schmid K, Tortella FC, Wang KK, Hayes RL (2011) Glial neuronal ratio (GNR): a novel index for differentiating injury type in patients with severe traumatic brain injury. J Neurotrauma 29:1096–1104

    Article  Google Scholar 

  28. Mondello S, Linnet A, Buki A, Robicsek S, Gabrielli A, Tepas J, Papa L, Brophy GM, Tortella F, Hayes RL, Wang KK (2012) Clinical utility of serum levels of ubiquitin C-terminal hydrolase as a biomarker for severe traumatic brain injury. Neurosurgery 70:666–675

    PubMed  PubMed Central  Google Scholar 

  29. Papa L, Akinyi L, Liu MC, Pineda JA, Tepas JJ 3rd, Oli MW, Zheng W, Robinson G, Robicsek SA, Gabrielli A, Heaton SC, Hannay HJ, Demery JA, Brophy GM, Layon J, Robertson CS, Hayes RL, Wang KK (2010) Ubiquitin C-terminal hydrolase is a novel biomarker in humans for severe traumatic brain injury. Crit Care Med 38:138–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kawai N, Nakamura T, Okauchi M, Nagao S (2000) Effects of hypothermia on intracranial hemodynamics and ischemic brain damage-studies in the rat acute subdural hematoma model. Acta Neurochir Suppl 76:529–533

    CAS  PubMed  Google Scholar 

  31. Kuroda Y, Bullock R (1992) Local cerebral blood flow mapping before and after removal of acute subdural hematoma in the rat. Neurosurgery 30:687–691

    Article  CAS  PubMed  Google Scholar 

  32. Jiang JY, Lyeth BG, Clifton GL, Jenkins LW, Hamm RJ, Hayes RL (1991) Relationship between body and brain temperature in traumatically brain-injured rodents. J Neurosurg 74:492–496

    Article  CAS  PubMed  Google Scholar 

  33. Di X, Bullock R (1996) Effect of the novel high-affinity glycine-site N-methyl-D-aspartate antagonist ACEA-1021 on 125I-MK-801 binding after subdural hematoma in the rat: an in vivo autoradiographic study. J Neurosurg 85:655–661

    Article  CAS  PubMed  Google Scholar 

  34. Kwon TH, Chao DL, Malloy K, Sun D, Alessandri B, Bullock MR (2003) Tempol, a novel stable nitroxide, reduces brain damage and free radical production, after acute subdural hematoma in the rat. J Neurotrauma 20:337–345

    Article  PubMed  Google Scholar 

  35. Kwon TH, Sun D, Daugherty WP, Spiess BD, Bullock MR (2005) Effect of perfluorocarbons on brain oxygenation and ischemic damage in an acute subdural hematoma model in rats. J Neurosurg 103:724–730

    Article  CAS  PubMed  Google Scholar 

  36. Voloboueva LA, Suh SW, Swanson RA, Giffard RG (2007) Inhibition of mitochondrial function in astrocytes: implications for neuroprotection. J Neurochem 102:1383–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xu L, Sapolsky RM, Giffard RG (2001) Differential sensitivity of murine astrocytes and neurons from different brain regions to injury. Exp Neurol 169:416–424

    Article  CAS  PubMed  Google Scholar 

  38. Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239:57–69

    Article  CAS  PubMed  Google Scholar 

  39. Pulsinelli WA, Brierley JB, Plum F (1982) Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 11:491–498

    Article  CAS  PubMed  Google Scholar 

  40. Rothwell NJ, Luheshi GN (2000) Interleukin 1 in the brain: biology, pathology and therapeutic target. Trends Neurosci 23:618–625

    Article  CAS  PubMed  Google Scholar 

  41. Eng LF, Ghirnikar RS, Lee YL (1996) Inflammation in EAE: role of chemokine/cytokine expression by resident and infiltrating cells. Neurochem Res 21:511–525

    Article  CAS  PubMed  Google Scholar 

  42. Hutchinson PJ, O’Connell MT, Nortje J, Smith P, Al-Rawi PG, Gupta AK, Menon DK, Pickard JD (2005) Cerebral microdialysis methodology—evaluation of 20 kDa and 100 kDa catheters. Physiol Meas 26:423–428

    Article  CAS  PubMed  Google Scholar 

  43. Waelgaard L, Pharo A, Tonnessen TI, Mollnes TE (2006) Microdialysis for monitoring inflammation: efficient recovery of cytokines and anaphylotoxins provided optimal catheter pore size and fluid velocity conditions. Scand J Immunol 64:345–352

    Article  CAS  PubMed  Google Scholar 

  44. Mellergard P, Aneman O, Sjogren F, Saberg C, Hillman J (2011) Differences in cerebral extracellular response of interleukin-1beta, interleukin-6, and interleukin-10 after subarachnoid hemorrhage or severe head trauma in humans. Neurosurgery 68:12–19, discussion 19

    Article  PubMed  Google Scholar 

  45. Biomarkers Definitions Working G (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69:89–95

    Article  Google Scholar 

  46. Mondello S, Muller U, Jeromin A, Streeter J, Hayes RL, Wang KK (2011) Blood-based diagnostics of traumatic brain injuries. Expert Rev Mol Diagn 11:65–78

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sanchez JJ, Bidot CJ, O’Phelan K, Gajavelli S, Yokobori S, Olvey S, Jagid J, Garcia JA, Nemeth Z, Bullock R (2013) Neuromonitoring with microdialysis in severe traumatic brain injury patients. Acta Neurochir Suppl 118:223–227

    PubMed  Google Scholar 

  48. Ottens AK, Kobeissy FH, Golden EC, Zhang Z, Haskins WE, Chen SS, Hayes RL, Wang KK, Denslow ND (2006) Neuroproteomics in neurotrauma. Mass Spectrom Rev 25:380–408

    Article  CAS  PubMed  Google Scholar 

  49. Mondello S, Schmid K, Berger RP, Kobeissy F, Italiano D, Jeromin A, Hayes RL, Tortella FC, Buki A (2013) The challenge of mild traumatic brain injury: role of biochemical markers in diagnosis of brain damage. Med Res Rev 34:503–531

    Article  PubMed  Google Scholar 

  50. Kobeissy FH, Sadasivan S, Oli MW, Robinson G, Larner SF, Zhang Z, Hayes RL, Wang KK (2008) Neuroproteomics and systems biology-based discovery of protein biomarkers for traumatic brain injury and clinical validation. Proteomics Clin Appl 2:1467–1483

    Article  CAS  PubMed  Google Scholar 

  51. Shyam Gajavelli AB, Spurlock M, Diaz D, Burks S, Bomberger C, Bidot CJ, Yokobori S, Diaz J, Sanchez-Chavez J, Bullock R (2011) Immunohistochemical correlation of novel biomarkers with neurodegeneration in rat models of brain injury. Immunocytochemistry. InTech - Open Access Publisher, Rijeka, Croatia

    Google Scholar 

  52. Kou Z, Gattu R, Kobeissy F, Welch RD, O’Neil BJ, Woodard JL, Ayaz SI, Kulek A, Kas-Shamoun R, Mika V, Zuk C, Tomasello F, Mondello S (2013) Combining biochemical and imaging markers to improve diagnosis and characterization of mild traumatic brain injury in the acute setting: results from a pilot study. PLoS One 8:e80296

    Article  PubMed  PubMed Central  Google Scholar 

  53. Haugaa H, Thorgersen EB, Pharo A, Boberg KM, Foss A, Line PD, Sanengen T, Almaas R, Grindheim G, Waelgaard L, Pischke SE, Mollnes TE, Inge Tonnessen T (2012) Inflammatory markers sampled by microdialysis catheters distinguish rejection from ischemia in liver grafts. Liver Transpl 18:1421–1429

    Article  PubMed  Google Scholar 

  54. Haugaa H, Almaas R, Thorgersen EB, Foss A, Line PD, Sanengen T, Bergmann GB, Ohlin P, Waelgaard L, Grindheim G, Pischke SE, Mollnes TE, Tonnessen TI (2013) Clinical experience with microdialysis catheters in pediatric liver transplants. Liver Transpl 19:305–314

    Article  PubMed  Google Scholar 

  55. de Rivero Vaccari JP, Dietrich WD, Keane RW (2014) Activation and regulation of cellular inflammasomes: gaps in our knowledge for central nervous system injury. J Cereb Blood Flow Metab 34:369–375

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

The part of this work is supported by funds from NINDS R01 NS 042133 and the Miami Project to Cure Paralysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoji Yokobori M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Yokobori, S., Spurlock, M.S., Lee, S.W., Gajavelli, S., Bullock, R.M. (2016). Microdialysis as Clinical Evaluation of Therapeutic Hypothermia in Rat Subdural Hematoma Model. In: Kobeissy, F., Dixon, C., Hayes, R., Mondello, S. (eds) Injury Models of the Central Nervous System. Methods in Molecular Biology, vol 1462. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3816-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3816-2_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3814-8

  • Online ISBN: 978-1-4939-3816-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics