Skip to main content

The Controlled Cortical Impact Model of Experimental Brain Trauma: Overview, Research Applications, and Protocol

  • Protocol
  • First Online:
Injury Models of the Central Nervous System

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1462))

Abstract

Controlled cortical impact (CCI) is a commonly used and highly regarded model of brain trauma that uses a pneumatically or electromagnetically controlled piston to induce reproducible and well-controlled injury. The CCI model was originally used in ferrets and it has since been scaled for use in many other species. This chapter will describe the historical development of the CCI model, compare and contrast the pneumatic and electromagnetic models, and summarize key short- and long-term consequences of TBI that have been gleaned using this model. In accordance with the recent efforts to promote high-quality evidence through the reporting of common data elements (CDEs), relevant study details—that should be reported in CCI studies—will be noted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kramer SP (1896) A contribution to the theory of cerebral concussion. Anim Surg 23:163–173

    Article  CAS  Google Scholar 

  2. Rinder L, Olsson Y (1968) Studies on vascular permeability changes in experimental brain concussion. I. Distribution of circulating fluorescent indicators in brain and cervical cord after sudden mechanical loading of the brain. Acta Neuropathol 11:183–200

    CAS  PubMed  Google Scholar 

  3. Denny-Brown D, Russell W (1941) Experimental cerebral concussion. Brain 64:93

    Article  Google Scholar 

  4. Lindgren S, Rinder L (1965) Experimental studies in head injury. I. Some factors influencing results of model experiments. Biophysik 2:320–329

    CAS  PubMed  Google Scholar 

  5. Lighthall JW (1988) Controlled cortical impact: a new experimental brain injury model. J Neurotrauma 5:1–15

    Article  CAS  PubMed  Google Scholar 

  6. Gennarelli TA, Thibault LE, Adams JH, Graham DI, Thompson CJ, Marcincin RP (1982) Diffuse axonal injury and traumatic coma in the primate. Ann Neurol 12:564–574

    Article  CAS  PubMed  Google Scholar 

  7. Govons SR, Govons RB, VanHuss WD, Heusner WW (1972) Brain concussion in the rat. Exp Neurol 34:121–128

    Article  CAS  PubMed  Google Scholar 

  8. Nilsson B, Pontén U, Voigt G (1977) Experimental head injury in the rat. Part 1: Mechanics, pathophysiology, and morphology in an impact acceleration trauma model. J Neurosurg 47:241–251

    Article  CAS  PubMed  Google Scholar 

  9. Ommaya AK, Geller A, Parsons LC (1971) The effect of experimental head injury on one-trial learning in rats. Int J Neurosci 1:371–378

    Article  CAS  PubMed  Google Scholar 

  10. Ommaya AK, Gennarelli TA (1974) Cerebral concussion and traumatic unconsciousness. Correlation of experimental and clinical observations of blunt head injuries. Brain 97:633–654

    Article  CAS  PubMed  Google Scholar 

  11. Sullivan HG, Martinez J, Becker DP, Miller JD, Griffith R, Wist AO (1976) Fluid-percussion model of mechanical brain injury in the cat. J Neurosurg 45:521–534

    Article  CAS  PubMed  Google Scholar 

  12. Cannon WB (1901) Cerebral pressure following trauma. Am J Physiol 6:91–121

    Google Scholar 

  13. Parkinson D, West M, Pathiraja T (1978) Concussion: comparison of humans and rats. Neurosurgery 3:176–180

    Article  CAS  PubMed  Google Scholar 

  14. Onyszchuk G, Al-Hafez B, He Y-Y, Bilgen M, Berman NEJ, Brooks WM (2007) A mouse model of sensorimotor controlled cortical impact: characterization using longitudinal magnetic resonance imaging, behavioral assessments and histology. J Neurosci Methods 160:187–196

    Article  PubMed  Google Scholar 

  15. Lighthall JW, Goshgarian HG, Pinderski CR (1990) Characterization of axonal injury produced by controlled cortical impact. J Neurotrauma 7:65–76

    Article  CAS  PubMed  Google Scholar 

  16. Dixon C, Clifton G, Lighthall J, Yaghmai A, Hayes R (1991) A controlled cortical impact model of traumatic brain injury in the rat. J Neurosci Methods 39:253–262

    Article  CAS  PubMed  Google Scholar 

  17. Shitaka Y, Tran HT, Bennett RE, Sanchez L, Levy MA, Dikranian K, Brody DL (2011) Repetitive closed-skull traumatic brain injury in mice causes persistent multifocal axonal injury and microglial reactivity. J Neuropathol Exp Neurol 70:551–567

    Article  PubMed  PubMed Central  Google Scholar 

  18. Klemenhagen KC, O’Brien SP, Brody DL (2013) Repetitive concussive traumatic brain injury interacts with post-injury foot shock stress to worsen social and depression-like behavior in mice. PLoS One 8:e74510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Petraglia AL, Plog BA, Dayawansa S, Chen M, Dashnaw ML, Czerniecka K, Walker CT, Viterise T, Hyrien O, Iliff JJ, Deane R, Nedergaard M, Huang JH (2014) The spectrum of neurobehavioral sequelae after repetitive mild traumatic brain injury: a novel mouse model of chronic traumatic encephalopathy. J Neurotrauma 31:1211–1224

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dixon C, Kochanek P, Yan H, Schiding J, Griffith R, Baum E, Marion D, DeKosky S (1999) One-year study of spatial memory performance, brain morphology, and cholinergic markers after moderate controlled cortical impact in rats. J Neurotrauma 16:109–122

    Article  CAS  PubMed  Google Scholar 

  21. Xiong Y, Zhang Y, Mahmood A, Meng Y, Zhang ZG, Morris DC, Chopp M (2012) Neuroprotective and neurorestorative effects of thymosin β4 treatment initiated 6 hours after traumatic brain injury in rats. J Neurosurg 116:1081–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Meng Y, Xiong Y, Mahmood A, Zhang Y, Qu C, Chopp M (2011) Dose-dependent neurorestorative effects of delayed treatment of traumatic brain injury with recombinant human erythropoietin in rats. J Neurosurg 115:550–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Longhi L, Watson DJ, Saatman KE, Thompson HJ, Zhang C, Fujimoto S, Royo N, Castelbuono D, Raghupathi R, Trojanowski JQ, Lee VM-Y, Wolfe JH, Stocchetti N, McIntosh TK (2004) Ex vivo gene therapy using targeted engraftment of NGF-expressing human NT2N neurons attenuates cognitive deficits following traumatic brain injury in mice. J Neurotrauma 21:1723–1736

    Article  PubMed  Google Scholar 

  24. Longhi L, Gesuete R, Perego C, Ortolano F, Sacchi N, Villa P, Stocchetti N, De Simoni M-G (2011) Long-lasting protection in brain trauma by endotoxin preconditioning. J Cereb Blood Flow Metab 31:1919–1929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cheng JP, Shaw KE, Monaco CM, Hoffman AN, Sozda CN, Olsen AS, Kline AE (2012) A relatively brief exposure to environmental enrichment after experimental traumatic brain injury confers long-term cognitive benefits. J Neurotrauma 29:2684–2688

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fox GB, Faden AI (1998) Traumatic brain injury causes delayed motor and cognitive impairment in a mutant mouse strain known to exhibit delayed Wallerian degeneration. J Neurosci Res 53:718–727

    Article  CAS  PubMed  Google Scholar 

  27. Dixon CE, Hamm RJ, Taft WC, Hayes RL (1994) Increased anticholinergic sensitivity following closed skull impact and controlled cortical impact traumatic brain injury in the rat. J Neurotrauma 11:275–287

    Article  CAS  PubMed  Google Scholar 

  28. Marklund N, Morales D, Clausen F, Hånell A, Kiwanuka O, Pitkänen A, Gimbel DA, Philipson O, Lannfelt L, Hillered L, Strittmatter SM, McIntosh TK (2009) Functional outcome is impaired following traumatic brain injury in aging Nogo-A/B-deficient mice. Neuroscience 163:540–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chauhan NB, Gatto R (2010) Synergistic benefits of erythropoietin and simvastatin after traumatic brain injury. Brain Res 1360:177–192

    Article  CAS  PubMed  Google Scholar 

  30. Chauhan NB, Gatto R (2011) Restoration of cognitive deficits after statin feeding in TBI. Restor Neurol Neurosci 29:23–34

    CAS  PubMed  Google Scholar 

  31. Byrnes KR, Loane DJ, Stoica BA, Zhang J, Faden AI (2012) Delayed mGluR5 activation limits neuroinflammation and neurodegeneration after traumatic brain injury. J Neuroinflammation 9:43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang Y, Chopp M, Mahmood A, Meng Y, Qu C, Xiong Y (2012) Impact of inhibition of erythropoietin treatment-mediated neurogenesis in the dentate gyrus of the hippocampus on restoration of spatial learning after traumatic brain injury. Exp Neurol 235:336–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tomasevic G, Laurer HL, Mattiasson G, van Steeg H, Wieloch T, McIntosh TK (2012) Delayed neuromotor recovery and increased memory acquisition dysfunction following experimental brain trauma in mice lacking the DNA repair gene XPA. J Neurosurg 116:1368–1378

    Article  PubMed  Google Scholar 

  34. Xiong Y, Zhang Y, Mahmood A, Meng Y, Qu C, Chopp M (2011) Erythropoietin mediates neurobehavioral recovery and neurovascular remodeling following traumatic brain injury in rats by increasing expression of vascular endothelial growth factor. Transl Stroke Res 2:619–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Han R-Z, Hu J-J, Weng Y-C, Li D-F, Huang Y (2009) NMDA receptor antagonist MK-801 reduces neuronal damage and preserves learning and memory in a rat model of traumatic brain injury. Neurosci Bull 25:367–375

    Article  CAS  PubMed  Google Scholar 

  36. Shultz SR, Bao F, Omana V, Chiu C, Brown A, Cain DP (2012) Repeated mild lateral fluid percussion brain injury in the rat causes cumulative long-term behavioral impairments, neuroinflammation, and cortical loss in an animal model of repeated concussion. J Neurotrauma 29:281–294

    Article  PubMed  Google Scholar 

  37. Shultz SR, Bao F, Weaver LC, Cain DP, Brown A (2013) Treatment with an anti-CD11d integrin antibody reduces neuroinflammation and improves outcome in a rat model of repeated concussion. J Neuroinflammation 10:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hamm RJ, Pike BR, Temple MD, O’Dell DM, Lyeth BG (1995) The effect of postinjury kindled seizures on cognitive performance of traumatically brain-injured rats. Exp Neurol 136:143–148

    Article  CAS  PubMed  Google Scholar 

  39. Hoane MR (2004) Magnesium therapy and recovery of function in experimental models of brain injury and neurodegenerative disease. Clin Calcium 14:65–70

    PubMed  Google Scholar 

  40. Xiong Y, Mahmood A, Zhang Y, Meng Y, Zhang ZG, Qu C, Sager TN, Chopp M (2011) Effects of posttraumatic carbamylated erythropoietin therapy on reducing lesion volume and hippocampal cell loss, enhancing angiogenesis and neurogenesis, and improving functional outcome in rats following traumatic brain injury. J Neurosurg 114:549–559

    Article  CAS  PubMed  Google Scholar 

  41. Rau TF, Kothiwal AS, Rova AR, Brooks DM, Poulsen DJ (2012) Treatment with low-dose methamphetamine improves behavioral and cognitive function after severe traumatic brain injury. J Trauma Acute Care Surg 73:S165–S172

    Article  CAS  PubMed  Google Scholar 

  42. Hallam TM, Floyd CL, Folkerts MM, Lee LL, Gong Q-Z, Lyeth BG, Muizelaar JP, Berman RF (2004) Comparison of behavioral deficits and acute neuronal degeneration in rat lateral fluid percussion and weight-drop brain injury models. J Neurotrauma 21:521–539

    Article  PubMed  Google Scholar 

  43. Thompson HJ, LeBold DG, Marklund N, Morales DM, Hagner AP, McIntosh TK (2006) Cognitive evaluation of traumatically brain-injured rats using serial testing in the Morris water maze. Restor Neurol Neurosci 24:109–114

    PubMed  PubMed Central  Google Scholar 

  44. Osier ND, Carlson SW, DeSana A, Dixon CE (2015) Chronic histopathological and behavioral outcomes of experimental traumatic brain injury in adult male animals. J Neurotrauma 32:1861. doi:10.1089/neu.2014.3680

    Article  PubMed  Google Scholar 

  45. Fox GB, LeVasseur RA, Faden AI (1999) Behavioral responses of C57BL/6, FVB/N, and 129/SvEMS mouse strains to traumatic brain injury: implications for gene targeting approaches to neurotrauma. J Neurotrauma 16:377–389

    Article  CAS  PubMed  Google Scholar 

  46. Hannay HJ, Feldman Z, Phan P, Keyani A, Panwar N, Goodman JC, Robertson CS (1999) Validation of a controlled cortical impact model of head injury in mice. J Neurotrauma 16:1103–1114

    Article  CAS  PubMed  Google Scholar 

  47. Fox GB, Fan L, LeVasseur RA, Faden AI (1998) Sustained sensory/motor and cognitive deficits with neuronal apoptosis following controlled cortical impact brain injury in the mouse. J Neurotrauma 15:599–614

    Article  CAS  PubMed  Google Scholar 

  48. Smith DH, Soares HD, Pierce JS, Perlman KG, Saatman KE, Meaney DF, Dixon CE, McIntosh TK (1995) A model of parasagittal controlled cortical impact in the mouse: cognitive and histopathologic effects. J Neurotrauma 12:169–178

    Article  CAS  PubMed  Google Scholar 

  49. Han X, Tong J, Zhang J, Farahvar A, Wang E, Yang J, Samadani U, Smith DH, Huang JH (2011) Imipramine treatment improves cognitive outcome associated with enhanced hippocampal neurogenesis after traumatic brain injury in mice. J Neurotrauma 28:995–1007

    Article  PubMed  PubMed Central  Google Scholar 

  50. Scafidi S, Racz J, Hazelton J, McKenna MC, Fiskum G (2010) Neuroprotection by acetyl-L-carnitine after traumatic injury to the immature rat brain. Dev Neurosci 32:480–487

    CAS  PubMed  Google Scholar 

  51. Duhaime AC, Margulies SS, Durham SR, O’Rourke MM, Golden JA, Marwaha S, Raghupathi R (2000) Maturation-dependent response of the piglet brain to scaled cortical impact. J Neurosurg 93:455–462

    Article  CAS  PubMed  Google Scholar 

  52. Manley GT, Rosenthal G, Lam M, Morabito D, Yan D, Derugin N, Bollen A, Knudson MM, Panter SS (2006) Controlled cortical impact in swine: pathophysiology and biomechanics. J Neurotrauma 23:128–139

    Article  PubMed  Google Scholar 

  53. Costine BA, Quebeda-Clerkin PB, Dodge CP, Harris BT, Hillier SC, Duhaime A-C (2012) Neuron-specific enolase, but not S100B or myelin basic protein, increases in peripheral blood corresponding to lesion volume after cortical impact in piglets. J Neurotrauma 29:2689–2695

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kline AE, Dixon CE (2001) Contemporary in vivo models of brain trauma and a comparison of injury responses. In: Miller LP, Hayes RL (eds) Head trauma: basic, preclinical, and clinical directions. John Wiley & Sons, New York, NY, pp 65–84

    Google Scholar 

  55. King C, Robinson T, Dixon CE, Rao GR, Larnard D, Nemoto CEM (2010) Brain temperature profiles during epidural cooling with the ChillerPad in a monkey model of traumatic brain injury. J Neurotrauma 27:1895–1903

    Article  PubMed  Google Scholar 

  56. Dennis AM, Haselkorn ML, Vagni VA, Garman RH, Janesko-Feldman K, Bayir H, Clark RSB, Jenkins LW, Dixon CE, Kochanek PM (2009) Hemorrhagic shock after experimental traumatic brain injury in mice: effect on neuronal death. J Neurotrauma 26:889–899

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sandhir R, Berman NEJ (2010) Age-dependent response of CCAAT/enhancer binding proteins following traumatic brain injury in mice. Neurochem Int 56:188–193

    Article  CAS  PubMed  Google Scholar 

  58. Hemerka JN, Wu X, Dixon CE, Garman RH, Exo JL, Shellington DK, Blasiole B, Vagni VA, Janesko-Feldman K, Xu M, Wisniewski SR, Bayır H, Jenkins LW, Clark RSB, Tisherman SA, Kochanek PM (2012) Severe brief pressure-controlled hemorrhagic shock after traumatic brain injury exacerbates functional deficits and long-term neuropathological damage in mice. J Neurotrauma 29:2192–2208

    Article  PubMed  PubMed Central  Google Scholar 

  59. Monaco CM, Mattiola VV, Folweiler KA, Tay JK, Yelleswarapu NK, Curatolo LM, Matter AM, Cheng JP, Kline AE (2013) Environmental enrichment promotes robust functional and histological benefits in female rats after controlled cortical impact injury. Exp Neurol 247:410–418

    Article  PubMed  PubMed Central  Google Scholar 

  60. Pleasant JM, Carlson SW, Mao H, Scheff SW, Yang KH, Saatman KE (2011) Rate of neurodegeneration in the mouse controlled cortical impact model is influenced by impactor tip shape: implications for mechanistic and therapeutic studies. J Neurotrauma 28:2245–2262

    Article  PubMed  PubMed Central  Google Scholar 

  61. Statler KD, Kochanek PM, Dixon CE, Alexander HL, Warner DS, Clark RS, Wisniewski SR, Graham SH, Jenkins LW, Marion DW, Safar PJ (2000) Isoflurane improves long-term neurologic outcome versus fentanyl after traumatic brain injury in rats. J Neurotrauma 17:1179–1189

    Article  CAS  PubMed  Google Scholar 

  62. Statler KD, Alexander H, Vagni V, Holubkov R, Dixon CE, Clark R, Jenkins L, Kochanek PM (2006) Isoflurane exerts neuroprotective actions at or near the time of severe traumatic brain injury. Brain Res 1076:216–224

    Article  CAS  PubMed  Google Scholar 

  63. McDonald JW, Roeser NF, Silverstein FS, Johnston MV (1989) Quantitative assessment of neuroprotection against NMDA-induced brain injury. Exp Neurol 106:289–296

    Article  CAS  PubMed  Google Scholar 

  64. McPherson RW, Kirsch JR, Salzman SK, Traystman RJ (1994) The neurobiology of central nervous system trauma. Oxford University Press, New York, NY

    Google Scholar 

  65. Cole JT, Yarnell A, Kean WS, Gold E, Lewis B, Ren M, McMullen DC, Jacobowitz DM, Pollard HB, O’Neill JT, Grunberg NE, Dalgard CL, Frank JA, Watson WD (2011) Craniotomy: true sham for traumatic brain injury, or a sham of a sham? J Neurotrauma 28:359–369

    Article  PubMed  PubMed Central  Google Scholar 

  66. Shin SS, Bray ER, Dixon CE (2012) Effects of nicotine administration on striatal dopamine signaling after traumatic brain injury in rats. J Neurotrauma 29:843–850

    Article  PubMed  PubMed Central  Google Scholar 

  67. Shin SS, Bales JW, Yan HQ, Kline AE, Wagner AK, Lyons-Weiler J, Dixon CE (2013) The effect of environmental enrichment on substantia nigra gene expression after traumatic brain injury in rats. J Neurotrauma 30:259–270

    Article  PubMed  PubMed Central  Google Scholar 

  68. Meaney DF, Ross DT, Winkelstein BA, Brasko J, Goldstein D, Bilston LB, Thibault LE, Gennarelli TA (1994) Modification of the cortical impact model to produce axonal injury in the rat cerebral cortex. J Neurotrauma 11:599–612

    Article  CAS  PubMed  Google Scholar 

  69. He J, Evans C-O, Hoffman SW, Oyesiku NM, Stein DG (2004) Progesterone and allopregnanolone reduce inflammatory cytokines after traumatic brain injury. Exp Neurol 189:404–412

    Article  CAS  PubMed  Google Scholar 

  70. RIGOR Improving the quality of NINDS-supported pre-clinical and clinical research through rigorous study design and transparent reporting

    Google Scholar 

Download references

Acknowledgements

Support for this chapter comes from the following government funding sources: Department of Veterans Affairs grant RR&D B1127-I, NIH-NINDS grant R01-NS079061, and NIH-NINR grants 1F31NR014957 and T32NR009759. Additional support for this chapter comes from the following foundations and professional societies: The Pittsburgh Foundation, Sigma Theta Tau International Eta Chapter, the International Society for Nurses in Genetics, and the American Association of Neuroscience Nursing/Neuroscience Nursing Foundation. We would also like to acknowledge Mr. Michael D. Farmer for his time in generating the figures and Mrs. Marilyn K. Farmer for her continued editorial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Edward Dixon Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Osier, N., Dixon, C.E. (2016). The Controlled Cortical Impact Model of Experimental Brain Trauma: Overview, Research Applications, and Protocol. In: Kobeissy, F., Dixon, C., Hayes, R., Mondello, S. (eds) Injury Models of the Central Nervous System. Methods in Molecular Biology, vol 1462. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3816-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3816-2_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3814-8

  • Online ISBN: 978-1-4939-3816-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics