Synthetic Bioluminescent Coelenterazine Derivatives

  • Ryo Nishihara
  • Daniel Citterio
  • Koji SuzukiEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1461)


The development of coelenterazine (CTZ) derivatives resulting in superior optical characteristics is an efficient method to extend the range of its possible applications. Here, we describe the synthesis of three C-6 substituted CTZ derivatives retaining the recognition by Renilla luciferase (RLuc) and its derivatives. The novel derivatives are useful as bright blue-shifted CTZ derivatives, which can be used as an alternative to hitherto reported compound DeepBlueC™.

Key words

Bioluminescence Coelenterazine (CTZ) Renilla Luciferase (RLuc) DeepBlueC Luciferin Luciferase Chemiluminescence 



This work was supported by JSPS KAKENHI Grant Number 24225001.


  1. 1.
    Thorne N, Inglese J, Auld DS (2010) Illuminating insights into firefly luciferase and other bioluminescent reporters used in chemical biology. Chem Biol 17:646–657CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Goto T (1968) Chemistry of bioluminescence. Pure Appl Chem 17:421–442CrossRefGoogle Scholar
  3. 3.
    Teranishi K, Hisamatsu M, Yamada T (1999) Chemiluminescence of 2-methyl-6-arylimidazo[1,2-a]pyrazin-3(7H)-one in protic solvents: electron-donating substituent effect on the formation of the neutral singlet excited-state molecule. Luminescence 14:297–302CrossRefPubMedGoogle Scholar
  4. 4.
    Nakamura H, Wu C, Murai A, Inouye S, Shimomura O (1997) Efficient bioluminescence of bisdeoxycoelenterazine with the luciferase of a deep-sea shrimp oplophorus. Tetrahedron Lett 38:6405–6406CrossRefGoogle Scholar
  5. 5.
    Saito R, Hirano T, Maki S, Niwa H, Ohashi M (2011) Influence of electron-donating and electron-withdrawing substituents on the chemiluminescence behavior of coelenterazine analogs. Bull Chem Soc Jap 84:90–99CrossRefGoogle Scholar
  6. 6.
    Saito R, Hirano T, Niwa H, Ohashi M (1998) Substituent effects on the chemiluminescent properties of coelenterazine analogues. Chem Lett 27:95–96CrossRefGoogle Scholar
  7. 7.
    Inouye S, Shimomura O (1997) The use of Renilla Luciferase, Oplophorus Luciferase, and Apoaequorin as bioluminescent reporter protein in the presence of coelenterazine analogues as substrate. Biochem Biophys Res Commun 233:349–353CrossRefPubMedGoogle Scholar
  8. 8.
    Loening AM, Wu AM, Gambhir SS (2007) Red-shifted Renilla reniformis luciferase variants for imaging in living subjects. Nat Methods 4:641–643CrossRefPubMedGoogle Scholar
  9. 9.
    Woo J, Howell MH, von Arnim AG (2008) Structure–function studies on the active site of the coelenterazine-dependent luciferase from Renilla. Protein Sci 17:725–735CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Loening AM, Fenn TD, Gambhir SS (2007) Crystal structures of the luciferase and green fluorescent protein from Renilla reniformis. J Mol Biol 374:1017–1028CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Qi CF, Gomi Y, Hirano T, Ohashi M, Ohymiya Y, Tsuji FI (1992) Chemi- and bio-luminescence of coelenterazine analogues with phenyl homologues at the C-2 position. J Chem Soc Perkin Trans 1:1607–1611CrossRefGoogle Scholar
  12. 12.
    De A, Gambhir SS (2005) Noninvasive imaging of protein–protein interactions from live cells and living subjects using bioluminescence resonance energy transfer. FASEB J 19:2017–2019PubMedGoogle Scholar
  13. 13.
    Wu C, Nakamura H, Murai A, Shimomura O (2001) Chemi- and bioluminescence of coelenterazine analogues with a conjugated group at the C-8 position. Tetrahedron Lett 42:2997–3000CrossRefGoogle Scholar
  14. 14.
    Stepanyuk GA, Unch J, Malikova NP, Markova SV, Lee J, Vysotski ES (2010) Coelenterazine-v ligated to Ca-triggered coelenterazine-binding protein is a stable and efficient substrate of the red-shifted mutant of Renilla muelleri luciferase. Anal Bioanal Chem 398:1809–1817Google Scholar
  15. 15.
    Imai Y, Shibata T, Maki S, Niwa H, Ohashi M, Hirano T (2001) Fluorescence properties of phenolate anions of coelenteramide analogues: the light-emitter structure in aequorin bioluminescence. J Photochem Photobiol A Chem 146:95–107CrossRefGoogle Scholar
  16. 16.
    Shimomura O, Teranishi K (2000) Light-emitters involved in the luminescence of coelenterazine. Luminescence 15:51–58CrossRefPubMedGoogle Scholar
  17. 17.
    Nishihara R, Suzuki H, Hoshino E, Suganuma S, Sato M, Saitoh T, Nishiyama S, Iwasawa N, Citterio D, Suzuki K (2015) Bioluminescent coelenterazine derivatives with imidazopyrazinone C-6 extended substitution. Chem Commun 51:391–394CrossRefGoogle Scholar
  18. 18.
    Adamczyk M, Akireddy SR, Johnson DD, Mattingly PG, Pan Y, Reddy RE (2003) Synthesis of 3,7-dihydroimidazo[1,2a]pyrazine-3-ones and their chemiluminescent properties. Tetrahedron 59:8129–8142CrossRefGoogle Scholar
  19. 19.
    Adamczyk M, Johnson DD, Mattingly PG, Pan Y, Reddy RE (2001) Synthesis of coelenterazine. Org Prep Proc Int 33:477–485CrossRefGoogle Scholar
  20. 20.
    Phakhodee W, Toyoda M, Chou CM, Khunnawutmanotham N, Isobe M (2011) Suzuki–Miyaura coupling for general synthesis of dehydrocoelenterazine applicable for 6-position analogs directing toward bioluminescence studies. Tetrahedron 67:1150–1157CrossRefGoogle Scholar
  21. 21.
    Shimomura O (2012) Bioluminescence chemical principles and methods revised edition. World Scientific Publishing, SingaporeCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Applied Chemistry, Faculty of Science and TechnologyKeio UniversityYokohamaJapan

Personalised recommendations