Advertisement

In Vivo Bioluminescent Imaging of ATP-Binding Cassette Transporter-Mediated Efflux at the Blood–Brain Barrier

  • Joshua Bakhsheshian
  • Bih-Rong Wei
  • Matthew D. Hall
  • R. Mark Simpson
  • Michael M. GottesmanEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1461)

Abstract

We provide a detailed protocol for imaging ATP-binding cassette subfamily G member 2 (ABCG2) function at the blood–brain barrier (BBB) of transgenic mice. d-Luciferin is specifically transported by ABCG2 found on the apical side of endothelial cells at the BBB. The luciferase–luciferin enzymatic reaction produces bioluminescence, which allows a direct measurement of ABCG2 function at the BBB. Therefore bioluminescence imaging (BLI) correlates with ABCG2 function at the BBB and this can be measured by administering luciferin in a mouse model that expresses luciferase in the brain parenchyma. BLI allows for a relatively low-cost alternative for studying transporter function in vivo compared to other strategies such as positron emission tomography. This method for imaging ABCG2 function at the BBB can be used to investigate pharmacokinetic inhibition of the transporter.

Key words

d-Luciferin BCRP ABCG2 Optical imaging Neuroimaging 

Notes

Acknowledgments

We thank Mr. George Leiman for editorial assistance. This research was supported by the Intramural Research Program of the National Institutes of Health (NIH), National Cancer Institute. Joshua Bakhsheshian is a NIH Medical Research Scholar. The Medical Research Scholars Program is a public–private partnership supported jointly by the NIH and contributions to the Foundation for the NIH from Pfizer, the Leona M. and Harry B. Helmsley Charitable Trust, the Howard Hughes Medical Institute, as well as other private donors (listed at www.fnih.org/work/programs-development/medicalresearch-scholars-program).

References

  1. 1.
    Hartz AM, Bauer B (2010) Regulation of ABC transporters at the blood-brain barrier: new targets for CNS therapy. Mol Interv 10:293–304CrossRefPubMedGoogle Scholar
  2. 2.
    Zhu L, Ramboz S, Hewitt D, Boring L, Grass DS, Purchio AF (2004) Non-invasive imaging of GFAP expression after neuronal damage in mice. Neurosci Lett 367:210–212CrossRefPubMedGoogle Scholar
  3. 3.
    Vlaming ML, Lagas JS, Schinkel AH (2009) Physiological and pharmacological roles of ABCG2 (BCRP): recent findings in Abcg2 knockout mice. Adv Drug Deliv Rev 61:14–25CrossRefPubMedGoogle Scholar
  4. 4.
    Allen JD, Brinkhuis RF, Wijnholds J, Schinkel AH (1999) The mouse Bcrp1/Mxr/Abcp gene: amplification and overexpression in cell lines selected for resistance to topotecan, mitoxantrone, or doxorubicin. Cancer Res 59:4237–4241PubMedGoogle Scholar
  5. 5.
    Bakhsheshian J, Hall MD, Robey RW, Herrmann MA, Chen JQ, Bates SE, Gottesman MM (2013) Overlapping substrate and inhibitor specificity of human and murine ABCG2. Drug Metab Dispos 41:1805–1812CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Robey RW, Honjo Y, Morisaki K, Nadjem TA, Runge S, Risbood M, Poruchynsly MS, Bates SE (2003) Mutations at amino-acid 482 in the ABCG2 gene affect substrate and antagonist specificity. Br J Cancer 89:1971–1978CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bakhsheshian J, Wei BR, Chang KE, Shukla S, Ambudkar SV, Simpson RM, Gottesman MM, Hall MD (2013) Bioluminescent imaging of drug efflux at the blood-brain barrier mediated by the transporter ABCG2. Proc Natl Acad Sci U S A 110:20801–20806CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kannan P, John C, Zoghbi SS, Halldin C, Gottesman MM, Innis RB, Hall MD (2009) Imaging the function of P-glycoprotein with radiotracers: pharmacokinetics and in vivo applications. Clin Pharmacol Ther 86:368–377CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bignami A, Eng LF, Dahl D, Uyeda CT (1972) Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain Res 43:429–435CrossRefPubMedGoogle Scholar
  10. 10.
    Dickie M (1975) Keeping records in biology of the laboratory Mouse. Dover Publications, New York, NYGoogle Scholar
  11. 11.
    Bowie LJ (1978) Synthesis of firefly luciferin and structural analogs. Methods Enzymol 57:15–28CrossRefGoogle Scholar
  12. 12.
    Allen JD, van Loevezijn A, Lakhai JM, van der Valk M, van Tellingen O, Reid G, Schellens JH, Koomen GJ, Schinkel AH (2002) Potent and specific inhibition of the breast cancer resistance protein multidrug transporter in vitro and in mouse intestine by a novel analogue of fumitremorgin C. Mol Cancer Ther 1:417–425CrossRefPubMedGoogle Scholar
  13. 13.
    Ozvegy-Laczka C, Hegedus T, Varady G, Ujhelly O, Schuetz JD, Varadi A, Kéri G, Orfi L, Német K, Sarkadi B (2004) High-affinity interaction of tyrosine kinase inhibitors with the ABCG2 multidrug transporter. Mol Pharmacol 65:1485–1495CrossRefPubMedGoogle Scholar
  14. 14.
    Kannan P, Telu S, Shukla S, Ambudkar SV, Pike VW, Halldin C, Gottesman MM, Innis RB, Hall MD (2011) The “specific” P-glycoprotein inhibitor Tariquidar is also a substrate and an inhibitor for breast cancer resistance protein (BCRP/ABCG2). ACS Chem Neurosci 2:82–89CrossRefPubMedGoogle Scholar
  15. 15.
    Agarwal S, Sane R, Gallardo JL, Ohlfest JR, Elmquist WF (2010) Distribution of gefitinib to the brain is limited by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2)-mediated active efflux. J Pharmacol Exp Ther 334:147–155CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Shepard RL, Cao J, Starling JJ, Dantzig AH (2003) Modulation of P-glycoprotein but not MRP1- or BCRP-mediated drug resistance by LY335979. Int J Cancer 103:121–125CrossRefPubMedGoogle Scholar
  17. 17.
    Manaenko A, Chen H, Kammer J, Zhang JH, Tang J (2011) Comparison Evans Blue injection routes: intravenous versus intraperitoneal, for measurement of blood-brain barrier in a mice hemorrhage model. J Neurosci Methods 195:206–210CrossRefPubMedGoogle Scholar
  18. 18.
    Morrey JD, Olsen AL, Siddharthan V, Motter NE, Wang H, Taro BS, Chen D, Ruffner D, Hall JO (2008) Increased blood-brain barrier permeability is not a primary determinant for lethality of West Nile virus infection in rodents. J Gen Virol 89:467–473CrossRefPubMedGoogle Scholar
  19. 19.
    Aswendt M, Adamczak J, Couillard-Despres S, Hoehn M (2013) Boosting bioluminescence neuroimaging: an optimized protocol for brain studies. PLoS One 8:e55662CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kadurugamuwa JL, Modi K, Coquoz O, Rice B, Smith S, Contag PR, Purchio T (2005) Reduction of astrogliosis by early treatment of pneumococcal meningitis measured by simultaneous imaging, in vivo, of the pathogen and host response. Infect Immun 73:7836–7843CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kanzaki S, Fujioka M, Yasuda A, Shibata S, Nakamura M, Okano HJ, Ogawa K, Okano H (2012) Novel in vivo imaging analysis of an inner ear drug delivery system in mice: comparison of inner ear drug concentrations over time after transtympanic and systemic injections. PLoS One 7:e48480CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Joshua Bakhsheshian
    • 1
  • Bih-Rong Wei
    • 2
  • Matthew D. Hall
    • 1
  • R. Mark Simpson
    • 2
  • Michael M. Gottesman
    • 1
    Email author
  1. 1.Laboratory of Cell Biology, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaUSA
  2. 2.Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaUSA

Personalised recommendations