Unconventional Protein Secretion pp 91-101

Part of the Methods in Molecular Biology book series (MIMB, volume 1459) | Cite as

Following the Time-Course of Post-pollination Events by Transmission Electron Microscopy (TEM): Buildup of Exosome-Like Structures with Compatible Pollinations

  • Darya Safavian
  • Jennifer Doucet
  • Daphne R. Goring
Protocol

Abstract

In the Brassicaceae, the dry stigma is an initial barrier to pollen acceptance as the stigmatic papillae lack surface secretions, and consequently rapid cellular responses are required to accept compatible pollen. Regulated secretion with secretory vesicles or multivesicular bodies is initiated in the stigmatic papillae towards the compatible pollen grain. In self-incompatible species, this basal compatible pollen response is superseded by the self-incompatibility signaling pathway where the secretory organelles are found in autophagosomes and vacuole for destruction. In this chapter, we describe a detailed protocol using the Transmission Electron Microscope to document the rapid cellular changes that occur in the stigmatic papillae in response to compatible versus self-incompatible pollen, at the pollen–stigma interface.

Key words

Pollen–pistil interactions Self-incompatibility Vesicles Multivesicular bodies Exosomes Autophagy Transmission electron microscopy 

References

  1. 1.
    Qu LJ, Li L, Lan Z, Dresselhaus T (2015) Peptide signalling during the pollen tube journey and double fertilization. J Exp Bot 66(17):5139–5150CrossRefPubMedGoogle Scholar
  2. 2.
    Higashiyama T, Takeuchi H (2015) The mechanism and key molecules involved in pollen tube guidance. Annu Rev Plant Biol 66:393–413CrossRefPubMedGoogle Scholar
  3. 3.
    Heslop-Harrison Y, Shivanna K (1977) The receptive surface of the angiosperm stigma. Ann Bot 41(6):1233–1258Google Scholar
  4. 4.
    Roberts IN, Stead AD, Ockendon DJ, Dickinson HG (1980) Pollen stigma interactions in Brassica oleracea. Theor Appl Genet 58(6):241–246CrossRefPubMedGoogle Scholar
  5. 5.
    Chapman LA, Goring DR (2010) Pollen-pistil interactions regulating successful fertilization in the Brassicaceae. J Exp Bot 61(7):1987–1999CrossRefPubMedGoogle Scholar
  6. 6.
    Dickinson H (1995) Dry stigmas, water and self-incompatibility in Brassica. Sex Plant Reprod 8(1):1–10CrossRefGoogle Scholar
  7. 7.
    Elleman CJ, Dickinson HG (1996) Identification of pollen components regulating pollination-specific responses in the stigmatic papillae of Brassica oleracea. New Phytol 133(2):197–205CrossRefGoogle Scholar
  8. 8.
    Edlund AF, Swanson R, Preuss D (2004) Pollen and stigma structure and function: the role of diversity in pollination. Plant Cell 16(Suppl):S84–S97CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Swanson R, Edlund AF, Preuss D (2004) Species specificity in pollen-pistil interactions. Annu Rev Genet 38:793–818CrossRefPubMedGoogle Scholar
  10. 10.
    Sawada H, Morita M, Iwano M (2014) Self/non-self recognition mechanisms in sexual reproduction: new insight into the self-incompatibility system shared by flowering plants and hermaphroditic animals. Biochem Biophys Res Commun 450(3):1142–1148CrossRefPubMedGoogle Scholar
  11. 11.
    Indriolo E, Safavian D, Goring DR (2014) Signaling events in pollen acceptance or rejection in the Arabidopsis species. In: Sawada H, Inoue N, Iwano M (eds) Sexual reproduction in animals and plants. SpringerOpen, Tokyo, pp 255–271CrossRefGoogle Scholar
  12. 12.
    Elleman CJ, Dickinson HG (1990) The role of the exine coating in pollen-stigma interactions in Brassica oleracea L. New Phytol 114(3):511–518CrossRefGoogle Scholar
  13. 13.
    Safavian D, Goring DR (2013) Secretory activity is rapidly induced in stigmatic papillae by compatible pollen, but inhibited for self-incompatible pollen in the Brassicaceae. PLoS One 8(12), e84286CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Safavian D, Jamshed M, Sankaranarayanan S, Indriolo E, Samuel MA, Goring DR (2014) High humidity partially rescues the Arabidopsis thaliana exo70A1 stigmatic defect for accepting compatible pollen. Plant Reprod 27(3):121–127CrossRefPubMedGoogle Scholar
  15. 15.
    Samuel MA, Chong YT, Haasen KE, Aldea-Brydges MG, Stone SL, Goring DR (2009) Cellular pathways regulating responses to compatible and self-incompatible pollen in Brassica and Arabidopsis stigmas intersect at Exo70A1, a putative component of the exocyst complex. Plant Cell 21(9):2655–2671CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Safavian D, Zayed Y, Indriolo E, Chapman L, Ahmed A, Goring D (2015) RNA silencing of exocyst genes in the stigma impairs the acceptance of compatible pollen in Arabidopsis. Plant Physiol 169(4):2526–2538PubMedPubMedCentralGoogle Scholar
  17. 17.
    Synek L, Sekeres J, Zarsky V (2014) The exocyst at the interface between cytoskeleton and membranes in eukaryotic cells. Front Plant Sci 4:543CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Indriolo E, Safavian D, Goring DR (2014) The ARC1 E3 ligase promotes two different self-pollen avoidance traits in Arabidopsis. Plant Cell 26(4):1525–1543CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Safavian D, Goring D (2014) Autophagy in the rejection of self-pollen in the mustard family. Autophagy 10(12):2379–2380CrossRefPubMedGoogle Scholar
  20. 20.
    Smyth DR, Bowman JL, Meyerowitz EM (1990) Early flower development in Arabidopsis. Plant Cell 2:755–767CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Balanza V, Ballester P, Colombo M, Fourquin C, Martinez-Fernandez I, Ferrandiz C (2014) Genetic and phenotypic analyses of carpel development in Arabidopsis. Methods Mol Biol 1110:231–249CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Darya Safavian
    • 1
  • Jennifer Doucet
    • 1
  • Daphne R. Goring
    • 1
  1. 1.Department of Cell & Systems BiologyUniversity of TorontoTorontoCanada

Personalised recommendations