Skip to main content

Unconventional Protein Secretion in Plants

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1459))

Abstract

Unconventional protein secretion (UPS) describes secretion pathways that bypass one or several of the canonical secretion pit-stops on the way to the plasma membrane, and/or involve the secretion of leaderless proteins. So far, alternatives to conventional secretion were primarily observed and studied in yeast and animal cells. The sessile lifestyle of plants brings with it unique restraints on how they adapt to adverse conditions and environmental challenges. Recently, attention towards unconventional secretion pathways in plant cells has substantially increased, with the large number of leaderless proteins identified through proteomic studies. While UPS pathways in plants are certainly not yet exhaustively researched, an emerging notion is that induction of UPS pathways is correlated with pathogenesis and stress responses. Given the multitude UPS events observed, comprehensively organizing the routes proteins take to the apoplast in defined UPS categories is challenging. With the establishment of a larger collection of studied plant proteins taking these UPS pathways, a clearer picture of endomembrane trafficking as a whole will emerge. There are several novel enabling technologies, such as vesicle proteomics and chemical genomics, with great potential for dissecting secretion pathways, providing information about the cargo that travels along them and the conditions that induce them.

This is a preview of subscription content, log in via an institution.

Buying options

eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Nickel W (2010) Pathways of unconventional protein secretion. Curr Opin Biotechnol 21:621–626. doi:10.1016/j.copbio.2010.06.004

    Article  CAS  PubMed  Google Scholar 

  2. Lee MCS, Miller EA, Goldberg J et al (2004) Bi-directional protein transport between the ER and Golgi. Annu Rev Cell Dev Biol 20:87–123. doi:10.1146/annurev.cellbio.20.010403.105307

    Article  CAS  PubMed  Google Scholar 

  3. Park M, Jürgens G (2011) Membrane traffic and fusion at post-Golgi compartments. Front Plant Sci 2:111. doi:10.3389/fpls.2011.00111

    CAS  PubMed  Google Scholar 

  4. Alberts B, Johnson A, Lewis J et al (2008) Molecular biology of the cell, 5th edn. Garland Science, New York, NY

    Google Scholar 

  5. Blobel G, Dobberstein B (1975) Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J Cell Biol 67:835–851

    Article  CAS  PubMed  Google Scholar 

  6. Ding Y, Wang J, Wang J et al (2012) Unconventional protein secretion. Trends Plant Sci 17:606–615. doi:10.1016/j.tplants.2012.06.004

    Article  CAS  PubMed  Google Scholar 

  7. Drakakaki G, Dandekar A (2013) Protein secretion: how many secretory routes does a plant cell have? Plant Sci 203–204:74–78. doi:10.1016/j.plantsci.2012.12.017

    Article  PubMed  Google Scholar 

  8. Ding Y, Robinson DG, Jiang L (2014) Unconventional protein secretion (UPS) pathways in plants. Curr Opin Cell Biol 29:107–115. doi:10.1016/j.ceb.2014.05.008

    Article  CAS  PubMed  Google Scholar 

  9. Agrawal GK, Jwa N-S, Lebrun M-H et al (2010) Plant secretome: unlocking secrets of the secreted proteins. Proteomics 10:799–827. doi:10.1002/pmic.200900514

    Article  CAS  PubMed  Google Scholar 

  10. Krause C, Richter S, Knöll C, Jürgens G (2013) Plant secretome – from cellular process to biological activity. Biochim Biophys Acta 1834:2429–2441. doi:10.1016/j.bbapap.2013.03.024

    Article  CAS  PubMed  Google Scholar 

  11. Albenne C, Canut H, Jamet E (2013) Plant cell wall proteomics: the leadership of Arabidopsis thaliana. Front Plant Sci 4:111. doi:10.3389/fpls.2013.00111

    Article  PubMed  PubMed Central  Google Scholar 

  12. Stegmann M, Anderson RG, Westphal L et al (2013) The exocyst subunit Exo70B1 is involved in the immune response of Arabidopsis thaliana to different pathogens and cell death. Plant Signal Behav 8, e27421. doi:10.4161/psb.27421

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chen X, Ebbole DJ, Wang Z (2015) The exocyst complex: delivery hub for morphogenesis and pathogenesis in filamentous fungi. Curr Opin Plant Biol 28:48–54. doi:10.1016/j.pbi.2015.09.003

    Article  PubMed  Google Scholar 

  14. Micali CO, Neumann U, Grunewald D et al (2011) Biogenesis of a specialized plant-fungal interface during host cell internalization of Golovinomyces orontii haustoria. Cell Microbiol 13:210–226. doi:10.1111/j.1462-5822.2010.01530.x

    Article  CAS  PubMed  Google Scholar 

  15. Bednarek P, Kwon C, Schulze-Lefert P (2010) Not a peripheral issue: secretion in plant-microbe interactions. Curr Opin Plant Biol 13:378–387. doi:10.1016/j.pbi.2010.05.002

    Article  CAS  PubMed  Google Scholar 

  16. Meyer D, Pajonk S, Micali C et al (2009) Extracellular transport and integration of plant secretory proteins into pathogen-induced cell wall compartments. Plant J 57:986–999. doi:10.1111/j.1365-313X.2008.03743.x

    Article  CAS  PubMed  Google Scholar 

  17. Cheng F, Zamski E, Guo W et al (2009) Salicylic acid stimulates secretion of the normally symplastic enzyme mannitol dehydrogenase: a possible defense against mannitol-secreting fungal pathogens. Planta 230:1093–1103. doi:10.1007/s00425-009-1006-3

    Article  CAS  PubMed  Google Scholar 

  18. Hatsugai N, Hara-Nishimura I (2010) Two vacuole-mediated defense strategies in plants. Plant Signal Behav 5:1568–1570. doi:10.4161/psb.5.12.13319

    Article  PubMed  PubMed Central  Google Scholar 

  19. An Q, Hückelhoven R, Kogel K-H, van Bel AJE (2006) Multivesicular bodies participate in a cell wall-associated defence response in barley leaves attacked by the pathogenic powdery mildew fungus. Cell Microbiol 8:1009–1019. doi:10.1111/j.1462-5822.2006.00683.x

    Article  CAS  PubMed  Google Scholar 

  20. Torrado LC, Temmerman K, Müller H-M et al (2009) An intrinsic quality-control mechanism ensures unconventional secretion of fibroblast growth factor 2 in a folded conformation. J Cell Sci 122:3322–3329. doi:10.1242/jcs.049791

    Article  CAS  PubMed  Google Scholar 

  21. La Venuta G, Zeitler M, Steringer JP et al (2015) The startling properties of fibroblast growth factor 2: how to exit mammalian cells without a signal peptide at hand? J Biol Chem. doi:10.1074/jbc.R115.689257

    Google Scholar 

  22. Temmerman K, Ebert AD, Müller H-M et al (2008) A direct role for phosphatidylinositol-4,5-bisphosphate in unconventional secretion of fibroblast growth factor 2. Traffic 9:1204–1217. doi:10.1111/j.1600-0854.2008.00749.x

    Article  CAS  PubMed  Google Scholar 

  23. Nickel W (2011) The unconventional secretory machinery of fibroblast growth factor 2. Traffic 12:799–805. doi:10.1111/j.1600-0854.2011.01187.x

    Article  CAS  PubMed  Google Scholar 

  24. Hatsugai N, Iwasaki S, Tamura K et al (2009) A novel membrane fusion-mediated plant immunity against bacterial pathogens. Genes Dev 23:2496–2506. doi:10.1101/gad.1825209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cabral M, Anjard C, Malhotra V et al (2010) Unconventional secretion of AcbA in Dictyostelium discoideum through a vesicular intermediate. Eukaryot Cell 9:1009–1017. doi:10.1128/EC.00337-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kinseth MA, Anjard C, Fuller D et al (2007) The Golgi-associated protein GRASP is required for unconventional protein secretion during development. Cell 130:524–534. doi:10.1016/j.cell.2007.06.029

    Article  CAS  PubMed  Google Scholar 

  27. Schotman H, Karhinen L, Rabouille C (2008) dGRASP-mediated noncanonical integrin secretion is required for Drosophila epithelial remodeling. Dev Cell 14:171–182. doi:10.1016/j.devcel.2007.12.006

    Article  CAS  PubMed  Google Scholar 

  28. Giuliani F, Grieve A, Rabouille C (2011) Unconventional secretion: a stress on GRASP. Curr Opin Cell Biol 23:498–504. doi:10.1016/j.ceb.2011.04.005

    Article  CAS  PubMed  Google Scholar 

  29. Dupree P, Sherrier DJ (1998) The plant Golgi apparatus. Biochim Biophys Acta 1404:259–270

    Article  CAS  PubMed  Google Scholar 

  30. Schoberer J, Strasser R (2011) Sub-compartmental organization of Golgi-resident N-glycan processing enzymes in plants. Mol Plant 4:220–228. doi:10.1093/mp/ssq082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hwang I, Robinson DG (2009) Transport vesicle formation in plant cells. Curr Opin Plant Biol 12:660–669. doi:10.1016/j.pbi.2009.09.012

    Article  CAS  PubMed  Google Scholar 

  32. Surpin M, Raikhel N (2004) Traffic jams affect plant development and signal transduction. Nat Rev Mol Cell Biol 5:100–109. doi:10.1038/nrm1311

    Article  CAS  PubMed  Google Scholar 

  33. Faso C, Boulaflous A, Brandizzi F (2009) The plant Golgi apparatus: last 10 years of answered and open questions. FEBS Lett 583:3752–3757. doi:10.1016/j.febslet.2009.09.046

    Article  CAS  PubMed  Google Scholar 

  34. Worden N, Park E, Drakakaki G (2012) Trans-Golgi network: an intersection of trafficking cell wall components. J Integr Plant Biol 54:875–886. doi:10.1111/j.1744-7909.2012.01179.x

    CAS  PubMed  Google Scholar 

  35. Staehelin LA, Driouich A (1997) Brefeldin A effects in plants (are different Golgi responses caused by different sites of action?). Plant Physiol 114:401–403

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Nebenführ A, Ritzenthaler C, Robinson DG (2002) Brefeldin A: deciphering an enigmatic inhibitor of secretion. Plant Physiol 130:1102–1108. doi:10.1104/pp.011569

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhang H, Zhang L, Gao B et al (2011) Golgi apparatus-localized synaptotagmin 2 is required for unconventional secretion in Arabidopsis. PLoS One 6, e26477. doi:10.1371/journal.pone.0026477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nielsen ME, Feechan A, Böhlenius H et al (2012) Arabidopsis ARF-GTP exchange factor, GNOM, mediates transport required for innate immunity and focal accumulation of syntaxin PEN1. Proc Natl Acad Sci U S A 109:11443–11448. doi:10.1073/pnas.1117596109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ueda T, Yamaguchi M, Uchimiya H, Nakano A (2001) Ara6, a plant-unique novel type Rab GTPase, functions in the endocytic pathway of Arabidopsis thaliana. EMBO J 20:4730–4741. doi:10.1093/emboj/20.17.4730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nielsen ME, Thordal-Christensen H (2013) Transcytosis shuts the door for an unwanted guest. Trends Plant Sci 18:611–616. doi:10.1016/j.tplants.2013.06.002

    Article  CAS  PubMed  Google Scholar 

  41. An Q, Ehlers K, Kogel K-H et al (2006) Multivesicular compartments proliferate in susceptible and resistant MLA12-barley leaves in response to infection by the biotrophic powdery mildew fungus. New Phytol 172:563–576. doi:10.1111/j.1469-8137.2006.01844.x

    Article  CAS  PubMed  Google Scholar 

  42. Pinedo M, Orts F, Carvalho AO et al (2015) Molecular characterization of Helja, an extracellular jacalin-related protein from Helianthus annuus: Insights into the relationship of this protein with unconventionally secreted lectins. J Plant Physiol 183:144–153. doi:10.1016/j.jplph.2015.06.004

    Article  CAS  PubMed  Google Scholar 

  43. Pinedo M, Regente M, Elizalde M et al (2012) Extracellular sunflower proteins: evidence on non-classical secretion of a jacalin-related lectin. Protein Pept Lett 19:270–276

    Article  CAS  PubMed  Google Scholar 

  44. TerBush DR, Maurice T, Roth D, Novick P (1996) The exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J 15:6483–6494

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Murthy M, Garza D, Scheller RH, Schwarz TL (2003) Mutations in the exocyst component Sec5 disrupt neuronal membrane traffic, but neurotransmitter release persists. Neuron 37:433–447

    Article  CAS  PubMed  Google Scholar 

  46. Ting AE, Hazuka CD, Hsu SC et al (1995) rSec6 and rSec8, mammalian homologs of yeast proteins essential for secretion. Proc Natl Acad Sci U S A 92:9613–9617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hála M, Cole R, Synek L et al (2008) An exocyst complex functions in plant cell growth in Arabidopsis and tobacco. Plant Cell 20:1330–1345. doi:10.1105/tpc.108.059105

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wang J, Ding Y, Wang J et al (2010) EXPO, an exocyst-positive organelle distinct from multivesicular endosomes and autophagosomes, mediates cytosol to cell wall exocytosis in Arabidopsis and tobacco cells. Plant Cell 22:4009–4030. doi:10.1105/tpc.110.080697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Poulsen CP, Dilokpimol A, Mouille G et al (2014) Arabinogalactan glycosyltransferases target to a unique subcellular compartment that may function in unconventional secretion in plants. Traffic 15:1219–1234. doi:10.1111/tra.12203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lin Y, Ding Y, Wang J et al (2015) Exocyst-positive organelles and autophagosomes are distinct organelles in plants. Plant Physiol 169:1917–1932. doi:10.1104/pp.15.00953

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Poulsen CP, Dilokpimol A, Geshi N (2015) Arabinogalactan biosynthesis: Implication of AtGALT29A enzyme activity regulated by phosphorylation and co-localized enzymes for nucleotide sugar metabolism in the compartments outside of the Golgi apparatus. Plant Signal Behav 10, e984524. doi:10.4161/15592324.2014.984524

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ding Y, Wang J, Chun Lai JH et al (2014) Exo70E2 is essential for exocyst subunit recruitment and EXPO formation in both plants and animals. Mol Biol Cell 25:412–426. doi:10.1091/mbc.E13-10-0586

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kulich I, Pečenková T, Sekereš J et al (2013) Arabidopsis exocyst subcomplex containing subunit EXO70B1 is involved in autophagy-related transport to the vacuole. Traffic 14:1155–1165. doi:10.1111/tra.12101

    CAS  PubMed  Google Scholar 

  54. Vukašinović N, Cvrčková F, Eliáš M et al (2014) Dissecting a hidden gene duplication: the Arabidopsis thaliana SEC10 locus. PLoS One 9, e94077. doi:10.1371/journal.pone.0094077

    Article  PubMed  PubMed Central  Google Scholar 

  55. Cvrčková F, Grunt M, Bezvoda R et al (2012) Evolution of the land plant exocyst complexes. Front Plant Sci 3:159. doi:10.3389/fpls.2012.00159

    PubMed  PubMed Central  Google Scholar 

  56. Staehelin LA, Giddings TH, Kiss JZ, Sack FD (1990) Macromolecular differentiation of Golgi stacks in root tips of Arabidopsis and Nicotiana seedlings as visualized in high pressure frozen and freeze-substituted samples. Protoplasma 157:75–91

    Article  CAS  PubMed  Google Scholar 

  57. Samuels AL, Rensing KH, Douglas CJ et al (2002) Cellular machinery of wood production: differentiation of secondary xylem in Pinus contorta var. latifolia. Planta 216:72–82. doi:10.1007/s00425-002-0884-4

    Article  CAS  PubMed  Google Scholar 

  58. Toyooka K, Goto Y, Asatsuma S et al (2009) A mobile secretory vesicle cluster involved in mass transport from the Golgi to the plant cell exterior. Plant Cell 21:1212–1229. doi:10.1105/tpc.108.058933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kang B, Nielsen E, Lai M et al (2011) Electron tomography of RabA4b- and PI-4 K β 1-labeled trans Golgi network compartments in Arabidopsis. Traffic 12:313–329. doi:10.1111/j.1600-0854.2010.01146.x

    Article  CAS  PubMed  Google Scholar 

  60. Staehelin LA, Kang B-H (2008) Nanoscale architecture of endoplasmic reticulum export sites and of Golgi membranes as determined by electron tomography. Plant Physiol 147:1454–1468. doi:10.1104/pp.108.120618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kang B-H (2010) Electron microscopy and high-pressure freezing of Arabidopsis. Methods Cell Biol 96:259–283. doi:10.1016/s0091-679x(10)96012-3

    Article  PubMed  Google Scholar 

  62. Drakakaki G, Robert S, Raikhel NV, Hicks GR (2009) Chemical dissection of endosomal pathways. Plant Signal Behav 4(1):57–62. doi: 10.1073/pnas.0711650.www.landesbioscience.com

    Google Scholar 

  63. Worden N, Girke T, Drakakaki G (2014) Endomembrane dissection using chemically induced bioactive clusters. Methods Mol Biol 1056:159–168. doi:10.1007/978-1-62703-592-7_16

    Article  PubMed  Google Scholar 

  64. Worden N, Wilkop TE, Esteve VE et al (2015) CESA trafficking inhibitor inhibits cellulose deposition and interferes with the trafficking of cellulose synthase complexes and their associated proteins KORRIGAN1 and POM2/cellulose synthase interactive protein 1. Plant Physiol 167:381–393. doi:10.1104/pp.114.249003

    Article  CAS  PubMed  Google Scholar 

  65. Klausner RD, Donaldson JG, Lippincott-Schwartz J (1992) Brefeldin A: insights into the control of membrane traffic and organelle structure. J Cell Biol 116:1071–1080

    Article  CAS  PubMed  Google Scholar 

  66. Wang J, Cai Y, Miao Y et al (2009) Wortmannin induces homotypic fusion of plant prevacuolar compartments. J Exp Bot 60:3075–3083. doi:10.1093/jxb/erp136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Drakakaki G, Robert S, Szatmari A-M et al (2011) Clusters of bioactive compounds target dynamic endomembrane networks in vivo. Proc Natl Acad Sci U S A 108:17850–17855. doi:10.1073/pnas.1108581108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Doyle SM, Haeger A, Vain T et al (2015) An early secretory pathway mediated by GNOM-LIKE 1 and GNOM is essential for basal polarity establishment in Arabidopsis thaliana. Proc Natl Acad Sci U S A 112:E806–E815. doi:10.1073/pnas.1424856112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Robert S, Chary SN, Drakakaki G et al (2008) Endosidin1 defines a compartment involved in endocytosis of the brassinosteroid receptor BRI1 and the auxin transporters PIN2 and AUX1. Proc Natl Acad Sci U S A 105:8464–8469. doi:10.1073/pnas.0711650105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Davis DJ, McDowell S, Drakakaki G (2014) The RAB GTPases RABA5d and RABA1e localize to the cell plate and display distinct patterns upon exposure to the cytokinesis inhibitor ES7. Plant Signal Behav 10(3):e984520

    Google Scholar 

  71. Park E, Díaz-moreno SM, Davis DJ et al (2014) Endosidin 7 specifically arrests late cytokinesis and inhibits callose biosynthesis, revealing distinct trafficking events during cell plate maturation. Plant Physiol 165:1019–1034. doi:10.1104/pp.114.241497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rivera-Serrano EE, Rodriguez-Welsh MF, Hicks GR, Rojas-Pierce M (2012) A small molecule inhibitor partitions two distinct pathways for trafficking of tonoplast intrinsic proteins in Arabidopsis. PLoS One 7, e44735. doi:10.1371/journal.pone.0044735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Drakakaki G, van de Ven W, Pan S et al (2012) Isolation and proteomic analysis of the SYP61 compartment reveal its role in exocytic trafficking in Arabidopsis. Cell Res 22:413–424. doi:10.1038/cr.2011.129

    Article  CAS  PubMed  Google Scholar 

  74. Park E, Drakakaki G (2014) Proteomics of endosomal compartments from plants case study: isolation of trans-Golgi network vesicles. Methods Mol Biol 1209:179–187. doi:10.1007/978-1-4939-1420-3_14

    Article  CAS  PubMed  Google Scholar 

  75. Nikolovski N, Rubtsov D, Segura MP et al (2012) Putative glycosyltransferases and other plant Golgi apparatus proteins are revealed by LOPIT proteomics. Plant Physiol 160:1037–1051. doi:10.1104/pp.112.204263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Groen AJ, Sancho-Andrés G, Breckels LM et al (2014) Identification of trans-Golgi network proteins in Arabidopsis thaliana root tissue. J Proteome Res 13:763–776. doi:10.1021/pr4008464

    Article  CAS  PubMed  Google Scholar 

  77. Heard E, Martienssen RA (2014) Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157:95–109. doi:10.1016/j.cell.2014.02.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Parsons HT, Drakakaki G, Heazlewood JL (2012) Proteomic dissection of the Arabidopsis Golgi and trans-Golgi network. Front Plant Sci 3:298. doi:10.3389/fpls.2012.00298

    PubMed  Google Scholar 

  79. Parsons HT, Weinberg CS, Macdonald LJ et al (2013) Golgi enrichment and proteomic analysis of developing Pinus radiata xylem by free-flow electrophoresis. PLoS One 8, e84669. doi:10.1371/journal.pone.0084669

    Article  PubMed  PubMed Central  Google Scholar 

  80. Rodrigues ML, Nosanchuk JD, Schrank A et al (2011) Vesicular transport systems in fungi. Future Microbiol 6:1371–1381. doi:10.2217/fmb.11.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSF-IOS-1258135 to G.D. and the Area of Excellence grant (AoE/M-05/12) from the Research Grants Council of Hong Kong to B.K.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas E. Wilkop or Georgia Drakakaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Davis, D.J., Kang, BH., Heringer, A.S., Wilkop, T.E., Drakakaki, G. (2016). Unconventional Protein Secretion in Plants. In: Pompa, A., De Marchis, F. (eds) Unconventional Protein Secretion. Methods in Molecular Biology, vol 1459. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3804-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3804-9_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3802-5

  • Online ISBN: 978-1-4939-3804-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics