Analyzing the Tumor Microenvironment by Flow Cytometry

  • Yoon Kow Young
  • Alicia M. Bolt
  • Ryuhjin Ahn
  • Koren K. Mann
Part of the Methods in Molecular Biology book series (MIMB, volume 1458)


Flow cytometry is an essential tool for studying the tumor microenvironment. It allows us to quickly quantify and identify multiple cell types in a heterogeneous sample. A brief overview of flow cytometry instrumentation and the appropriate considerations and steps in building a good flow cytometry staining panel are discussed. In addition, a lymphoid tissue and solid tumor leukocyte infiltrate flow cytometry staining protocol and an example of flow cytometry data analysis are presented.

Key words

Tumor microenvironment Solid tumor Immune cell infiltrate Flow cytometry (FCM) Staining panel Intracellular staining Fluorescence-activated cell sorting (FACS) Multi-parameter Isotype control Spillover Compensation Fluorescence minus one (FMO) 



We acknowledge grant support from the Canadian Institutes of Health Research (MOP115000 to K.K.M.) and Jewish General Hospital Foundation’s continued support of the LDI Flow Cytometry Facility. R.A. is supported by a fellowship from the Fonds de Recherche du Québec-Santé.


  1. 1.
    Liyanage UK, Moore TT, Joo HG, Tanaka Y, Herrmann V, Doherty G et al (2002) Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 169:2756–2761CrossRefPubMedGoogle Scholar
  2. 2.
    Yang L, DeBusk LM, Fukuda K, Fingleton B, Green-Jarvis B, Shyr Y et al (2004) Expansion of myeloid immune suppressor Gr+ CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6:409–421CrossRefPubMedGoogle Scholar
  3. 3.
    Sceneay J, Chow MT, Chen A, Halse HM, Wong CS, Andrews DM et al (2012) Primary tumor hypoxia recruits CD11b+/Ly6Cmed/Ly6G+ immune suppressor cells and compromises NK cell cytotoxicity in the premetastatic niche. Cancer Res 72:3906–3911CrossRefPubMedGoogle Scholar
  4. 4.
    Hulett HR, Bonner WA, Barrett J, Herzenberg LA (1969) Cell sorting: automated separation of mammalian cells as a function of intracellular fluorescence. Science 166:747–749CrossRefPubMedGoogle Scholar
  5. 5.
    Kamentsky LA, Melamed MR, Derman H (1965) Spectrophotometer: new instrument for ultrarapid cell analysis. Science 150:630–631CrossRefPubMedGoogle Scholar
  6. 6.
    Ford AL, Foulcher E, Goodsall AL, Sedgwick JD (1996) Tissue digestion with dispase substantially reduces lymphocyte and macrophage cell-surface antigen expression. J Immunol Methods 194:71–75CrossRefPubMedGoogle Scholar
  7. 7.
    Autengruber A, Gereke M, Hansen G, Hennig C, Bruder D (2012) Impact of enzymatic tissue disintegration on the level of surface molecule expression and immune cell function. Eur J Microbiol Immunol 2:112–120CrossRefGoogle Scholar
  8. 8.
    Shapiro HM (2005) Practical flow cytometry, 4th edn. Wiley, New York, p 736Google Scholar
  9. 9.
    Hulspas R, O’Gorman MR, Wood BL, Gratama JW, Sutherland DR (2009) Considerations for the control of background fluorescence in clinical flow cytometry. Cytometry B Clin Cytom 76:355–364CrossRefPubMedGoogle Scholar
  10. 10.
    Maecker HT, Frey T, Nomura LE, Trotter J (2004) Selecting fluorochrome conjugates for maximum sensitivity. Cytometry A 62:169–173CrossRefPubMedGoogle Scholar
  11. 11.
    Roederer M (2001) Spectral compensation for flow cytometry: visualization artifacts, limitations, and caveats. Cytometry 45:194–205CrossRefPubMedGoogle Scholar
  12. 12.
    Schmid I, Dagarag MD, Hausner MA, Matud JL, Just T, Effros RB, Jamieson BD (2002) Simultaneous flow cytometric analysis of two cell surface markers, telomere length, and DNA content. Cytometry 49:96–105CrossRefPubMedGoogle Scholar
  13. 13.
    Hulspas R, Dombkowski D, Preffer F, Douglas D, Kildew-Shah B, Gilbert J (2009) Flow cytometry and the stability of phycoerythrin-tandem dye conjugates. Cytometry A 75:966–972CrossRefPubMedGoogle Scholar
  14. 14.
    Kaplan D, Smith D (2000) Enzymatic amplification staining for flow cytometric analysis of cell surface molecules. Cytometry 40:81–85CrossRefPubMedGoogle Scholar
  15. 15.
    Hulspas R (2001) Titration of fluorochrome-conjugated antibodies for labeling cell surface markers on live cells. Curr Protoc Cytom Chapter 6:Unit 6.29Google Scholar
  16. 16.
    Stewart CC, Stewart SJ (2003) Titering antibodies. Wiley, New York, pp 4.1.1–4.1.13Google Scholar
  17. 17.
    Maecker HT, Trotter J (2006) Flow cytometry controls, instrument setup, and the determination of positivity. Cytometry A 69:1037–1042CrossRefPubMedGoogle Scholar
  18. 18.
    Roederer M (2002) Compensation in flow cytometry. Curr Protoc Cytom Chapter 1:Unit 1.14Google Scholar
  19. 19.
    Herzenberg LA, Tung J, Moore WA, Herzenberg LA, Parks DR (2006) Interpreting flow cytometry data: a guide for the perplexed. Nat Immunol 7:681–685CrossRefPubMedGoogle Scholar
  20. 20.
    O’Gorman Maurice RG, Thomas J (1999) Isotype controls—time to let go? Cytometry 38:78–80CrossRefGoogle Scholar
  21. 21.
    Holmes K, Lantz LM, Fowlkes BJ, Schmid I, Giorgi JV (2001) Preparation of cells and reagents for flow cytometry. Curr Protoc Immunol Chapter 5:Unit 5.3Google Scholar
  22. 22.
    McGrath KE, Bushnell TP, Palis J (2008) Multispectral imaging of hematopoietic cells: where flow meets morphology. J Immunol Methods 336:91–97CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Giesen C, Wang HA, Schapiro D, Zivanovic N, Jacobs A, Hattendorf B et al (2014) Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat Methods 11:417–422CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yoon Kow Young
    • 1
  • Alicia M. Bolt
    • 1
  • Ryuhjin Ahn
    • 1
  • Koren K. Mann
    • 1
  1. 1.Lady Davis Institute for Medical ResearchMcGill UniversityMontrealCanada

Personalised recommendations