Advertisement

Metabolomics Analyses of Cancer Cells in Controlled Microenvironments

  • Simon-Pierre Gravel
  • Daina Avizonis
  • Julie St-Pierre
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1458)

Abstract

The tumor microenvironment is a complex and heterogeneous milieu in which cancer cells undergo metabolic reprogramming to fuel their growth. Cancer cell lines grown in vitro using traditional culture methods represent key experimental models to gain a mechanistic understanding of tumor biology. This protocol describes the use of gas chromatography–mass spectrometry (GC-MS) to assess metabolic changes in cancer cells grown under varied levels of oxygen and nutrients that may better mimic the tumor microenvironment. Intracellular metabolite changes, metabolite uptake and release, as well as stable isotope (13C) tracer analyses are done in a single experimental setup to provide an integrated understanding of metabolic adaptation. Overall, this chapter describes some essential tools and methods to perform comprehensive metabolomics analyses.

Key words

Metabolomics Microenvironment Hypoxia Nutrients Stable isotope Methoximation Silylation GC-MS 

Notes

Acknowledgements

This work was supported by a Program Project Grant from the Terry Fox Research Institute (grant number TFF-116128 to J.S.-P.) and a grant from the Canadian Institutes of Health Research (CIHR, MOP-106603 to J.S.-P.). The Rosalind and Morris Goodman Cancer Research Centre Metabolomics Core Facility is supported by the Canada Foundation of Innovation, The John R. and Clara M. Fraser Memorial Trust, the Terry Fox Foundation (TFF-116128) and McGill University. J.S.-P is a FRQS research scholar.

References

  1. 1.
    Descot A, Oskarsson T (2013) The molecular composition of the metastatic niche. Exp Cell Res 319:1679–1686CrossRefPubMedGoogle Scholar
  2. 2.
    Boroughs LK, DeBerardinis RJ (2015) Metabolic pathways promoting cancer cell survival and growth. Nat Cell Biol 17:351–359CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Sullivan LB, Chandel NS (2014) Mitochondrial reactive oxygen species and cancer. Cancer Metab 2:17CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Ferreira LM, Hebrant A, Dumont JE (2012) Metabolic reprogramming of the tumor. Oncogene 31:3999–4011CrossRefPubMedGoogle Scholar
  5. 5.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674CrossRefGoogle Scholar
  6. 6.
    Sciacovelli M, Gaude E, Hilvo M, Frezza C (2014) The metabolic alterations of cancer cells. Methods Enzymol 542:1–23CrossRefPubMedGoogle Scholar
  7. 7.
    Helmlinger G, Yuan F, Dellian M, Jain RK (1997) Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med 3:177–182CrossRefPubMedGoogle Scholar
  8. 8.
    Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49:6449–6465PubMedGoogle Scholar
  9. 9.
    Wise DR, Thompson CB (2010) Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci 35:427–433CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Mayers JR, Vander Heiden MG (2015) Famine versus feast: understanding the metabolism of tumors in vivo. Trends Biochem Sci 40:130–140CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13:472–482CrossRefPubMedGoogle Scholar
  12. 12.
    Joyce JA (2005) Therapeutic targeting of the tumor microenvironment. Cancer Cell 7:513–520CrossRefPubMedGoogle Scholar
  13. 13.
    Sato JD, Kan M (2001) Media for culture of mammalian cells. Curr Protoc Cell Biol Chapter 1:Unit 1.2Google Scholar
  14. 14.
    Chambers KF, Mosaad EM, Russell PJ, Clements JA, Doran MR (2014) 3D Cultures of prostate cancer cells cultured in a novel high-throughput culture platform are more resistant to chemotherapeutics compared to cells cultured in monolayer. PLoS One 9:e111029CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Antoni D, Burckel H, Josset E, Noel G (2015) Three-dimensional cell culture: a breakthrough in vivo. Int J Mol Sci 16:5517–5527CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Birsoy K, Possemato R, Lorbeer FK, Bayraktar EC, Thiru P, Yucel B et al (2014) Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides. Nature 508:108–112CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Halama A (2014) Metabolomics in cell culture—a strategy to study crucial metabolic pathways in cancer development and the response to treatment. Arch Biochem Biophys 564:100–109CrossRefPubMedGoogle Scholar
  18. 18.
    Patel S, Ahmed S (2015) Emerging field of metabolomics: big promise for cancer biomarker identification and drug discovery. J Pharm Biomed Anal 107:63–74CrossRefPubMedGoogle Scholar
  19. 19.
    Hur H, Paik MJ, Xuan Y, Nguyen DT, Ham IH, Yun J et al (2014) Quantitative measurement of organic acids in tissues from gastric cancer patients indicates increased glucose metabolism in gastric cancer. PLoS One 9:e98581CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Grassian AR, Parker SJ, Davidson SM, Divakaruni AS, Green CR, Zhang X et al (2014) IDH1 mutations alter citric acid cycle metabolism and increase dependence on oxidative mitochondrial metabolism. Cancer Res 74:3317–3331CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Morita M, Gravel SP, Chenard V, Sikstrom K, Zheng L, Alain T et al (2013) mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation. Cell Metab 18:698–711CrossRefPubMedGoogle Scholar
  22. 22.
    Nanchen A, Fuhrer T, Sauer U (2007) Determination of metabolic flux ratios from 13C-experiments and gas chromatography-mass spectrometry data: protocol and principles. Methods Mol Biol 358:177–197CrossRefPubMedGoogle Scholar
  23. 23.
    Fendt SM, Bell EL, Keibler MA, Olenchock BA, Mayers JR, Wasylenko TM et al (2013) Reductive glutamine metabolism is a function of the alpha-ketoglutarate to citrate ratio in cells. Nat Commun 4:2236CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Buescher JM, Antoniewicz MR, Boros LG, Burgess SC, Brunengraber H, Clish CB et al (2015) A roadmap for interpreting (13)C metabolite labeling patterns from cells. Curr Opin Biotechnol 34:189–201CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Fan TW, Yuan P, Lane AN, Higashi RM, Wang Y, Hamidi AB et al (2010) Stable isotope-resolved metabolomic analysis of lithium effects on glial-neuronal metabolism and interactions. Metabolomics 6:165–179CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y et al (2013) HMDB 3.0—the human metabolome database in 2013. Nucleic Acids Res 41(Database issue):D801–D807CrossRefPubMedGoogle Scholar
  27. 27.
    Fernandez CA, Des Rosiers C, Previs SF, David F, Brunengraber H (1996) Correction of 13C mass isotopomer distributions for natural stable isotope abundance. J Mass Spectrom 31:255–262CrossRefPubMedGoogle Scholar
  28. 28.
    Jennings ME 2nd, Matthews DE (2005) Determination of complex isotopomer patterns in isotopically labeled compounds by mass spectrometry. Anal Chem 77:6435–6444CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Simon-Pierre Gravel
    • 1
    • 2
  • Daina Avizonis
    • 2
    • 3
  • Julie St-Pierre
    • 1
    • 2
  1. 1.Department of BiochemistryMcGill UniversityMontréalCanada
  2. 2.Goodman Cancer Research CentreMcGill UniversityMontréalCanada
  3. 3.Metabolomics Core Facility, Goodman Cancer Research CentreMcGill UniversityMontréalCanada

Personalised recommendations