Skip to main content

“Barcode” and Differential Effects of GPCR Phosphorylation by Different GRKs

  • Protocol
  • First Online:
Book cover G Protein-Coupled Receptor Kinases

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

As the largest known family of cell surface receptors and the most common therapeutic drug targets, G protein-coupled receptors (GPCRs) are at the center of modern medicine. Multiple site phosphorylation of GPCRs by G protein-coupled receptor kinases (GRKs) plays an essential role in the regulation of various functions and signaling cascades of a receptor. Research in recent years has elucidated a common mechanism by which different ligand-bound GPCRs engage different GRKs, which in turn phosphorylate distinct sites or overlapping sets of sites on the receptor. These different patterns of phosphorylation (the “barcode”) result in distinct consequences in receptor function and signaling. Here, we review these recent findings and discuss the ramifications of this phenomenon in biology and medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rockman HA, Koch WJ, Lefkowitz RJ (2002) Seven-transmembrane-spanning receptors and heart function. Nature 415(6868):206–212

    Article  CAS  PubMed  Google Scholar 

  2. Pierce KL, Luttrell LM, Lefkowitz RJ (2001) New mechanisms in heptahelical receptor signaling to mitogen activated protein kinase cascades. Oncogene 20(13):1532–1539

    Article  CAS  PubMed  Google Scholar 

  3. Lefkowitz RJ (1998) G protein-coupled receptors. III New roles for receptor kinases and beta-arrestins in receptor signaling and desensitization. J Biol Chem 273(30):18677–18680

    Article  CAS  PubMed  Google Scholar 

  4. Lefkowitz RJ (1996) G protein-coupled receptors and receptor kinases: from molecular biology to potential therapeutic applications. Nat Biotechnol 14(3):283–286

    Article  CAS  PubMed  Google Scholar 

  5. Pierce KL, Premont RT, Lefkowitz RJ (2002) Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3(9):639–650

    Article  CAS  PubMed  Google Scholar 

  6. Ma P, Zemmel R (2002) Value of novelty? Nat Rev Drug Discov 1(8):571–572

    Article  CAS  PubMed  Google Scholar 

  7. Neves SR, Ram PT, Iyengar R (2002) G protein pathways. Science 296(5573):1636–1639

    Article  CAS  PubMed  Google Scholar 

  8. Luttrell LM, Lefkowitz RJ (2002) The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. J Cell Sci 115(Pt 3):455–465

    CAS  PubMed  Google Scholar 

  9. Shenoy SK, Lefkowitz RJ (2003) Multifaceted roles of beta-arrestins in the regulation of seven-membrane-spanning receptor trafficking and signalling. Biochem J 375(Pt 3):503–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. McDonald PH, Lefkowitz RJ (2001) Beta-Arrestins: new roles in regulating heptahelical receptors’ functions. Cell Signal 13(10):683–689

    Article  CAS  PubMed  Google Scholar 

  11. Lefkowitz RJ, Shenoy SK (2005) Transduction of receptor signals by beta-arrestins. Science 308(5721):512–517

    Article  CAS  PubMed  Google Scholar 

  12. Lefkowitz RJ, Rajagopal K, Whalen EJ (2006) New roles for beta-arrestins in cell signaling: not just for seven-transmembrane receptors. Mol Cell 24(5):643–652

    Article  CAS  PubMed  Google Scholar 

  13. Gurevich VV, Gurevich EV (2006) The structural basis of arrestin-mediated regulation of G-protein-coupled receptors. Pharmacol Ther 110(3):465–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim J, Ahn S, Ren XR, Whalen EJ, Reiter E, Wei H, Lefkowitz RJ (2005) Functional antagonism of different G protein-coupled receptor kinases for beta-arrestin-mediated angiotensin II receptor signaling. Proc Natl Acad Sci U S A 102(5):1442–1447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ren XR, Reiter E, Ahn S, Kim J, Chen W, Lefkowitz RJ (2005) Different G protein-coupled receptor kinases govern G protein and beta-arrestin-mediated signaling of V2 vasopressin receptor. Proc Natl Acad Sci U S A 102(5):1448–1453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shenoy SK, Drake MT, Nelson CD, Houtz DA, Xiao K, Madabushi S, Reiter E, Premont RT, Lichtarge O, Lefkowitz RJ (2006) beta-arrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor. J Biol Chem 281(2):1261–1273

    Article  CAS  PubMed  Google Scholar 

  17. Shichi H, Somers RL (1978) Light-dependent phosphorylation of rhodopsin. Purification and properties of rhodopsin kinase. J Biol Chem 253(19):7040–7046

    CAS  PubMed  Google Scholar 

  18. Weiss ER, Raman D, Shirakawa S, Ducceschi MH, Bertram PT, Wong F, Kraft TW, Osawa S (1998) The cloning of GRK7, a candidate cone opsin kinase, from cone- and rod-dominant mammalian retinas. Mol Vis 4:27

    CAS  PubMed  Google Scholar 

  19. Benovic JL, Strasser RH, Caron MG, Lefkowitz RJ (1986) Beta-adrenergic receptor kinase: identification of a novel protein kinase that phosphorylates the agonist-occupied form of the receptor. Proc Natl Acad Sci U S A 83(9):2797–2801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Benovic JL, Onorato JJ, Arriza JL, Stone WC, Lohse M, Jenkins NA, Gilbert DJ, Copeland NG, Caron MG, Lefkowitz RJ (1991) Cloning, expression, and chromosomal localization of beta-adrenergic receptor kinase 2. A new member of the receptor kinase family. J Biol Chem 266(23):14939–14946

    CAS  PubMed  Google Scholar 

  21. Sallese M, Lombardi MS, De Blasi A (1994) Two isoforms of G protein-coupled receptor kinase 4 identified by molecular cloning. Biochem Biophys Res Commun 199(2):848–854

    Article  CAS  PubMed  Google Scholar 

  22. Premont RT, Koch WJ, Inglese J, Lefkowitz RJ (1994) Identification, purification, and characterization of GRK5, a member of the family of G protein-coupled receptor kinases. J Biol Chem 269(9):6832–6841

    CAS  PubMed  Google Scholar 

  23. Kunapuli P, Benovic JL (1993) Cloning and expression of GRK5: a member of the G protein-coupled receptor kinase family. Proc Natl Acad Sci U S A 90(12):5588–5592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Benovic JL, Gomez J (1993) Molecular cloning and expression of GRK6. A new member of the G protein-coupled receptor kinase family. J Biol Chem 268(26):19521–19527

    CAS  PubMed  Google Scholar 

  25. Benovic JL, Mayor F Jr, Staniszewski C, Lefkowitz RJ, Caron MG (1987) Purification and characterization of the beta-adrenergic receptor kinase. J Biol Chem 262(19):9026–9032

    CAS  PubMed  Google Scholar 

  26. Chen CK, Burns ME, Spencer M, Niemi GA, Chen J, Hurley JB, Baylor DA, Simon MI (1999) Abnormal photoresponses and light-induced apoptosis in rods lacking rhodopsin kinase. Proc Natl Acad Sci U S A 96(7):3718–3722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pitcher JA, Freedman NJ, Lefkowitz RJ (1998) G protein-coupled receptor kinases. Annu Rev Biochem 67:653–692

    Article  CAS  PubMed  Google Scholar 

  28. Premont RT, Inglese J, Lefkowitz RJ (1995) Protein kinases that phosphorylate activated G protein-coupled receptors. FASEB J 9(2):175–182

    CAS  PubMed  Google Scholar 

  29. Willets JM, Challiss RA, Nahorski SR (2003) Non-visual GRKs: are we seeing the whole picture? Trends Pharmacol Sci 24(12):626–633

    Article  CAS  PubMed  Google Scholar 

  30. Premont RT, Macrae AD, Aparicio SA, Kendall HE, Welch JE, Lefkowitz RJ (1999) The GRK4 subfamily of G protein-coupled receptor kinases. Alternative splicing, gene organization, and sequence conservation. J Biol Chem 274(41):29381–29389

    Article  CAS  PubMed  Google Scholar 

  31. Jiang X, Benovic JL, Wedegaertner PB (2007) Plasma membrane and nuclear localization of G protein coupled receptor kinase 6A. Mol Biol Cell 18(8):2960–2969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Thiyagarajan MM, Stracquatanio RP, Pronin AN, Evanko DS, Benovic JL, Wedegaertner PB (2004) A predicted amphipathic helix mediates plasma membrane localization of GRK5. J Biol Chem 279(17):17989–17995

    Article  CAS  PubMed  Google Scholar 

  33. Pitcher JA, Fredericks ZL, Stone WC, Premont RT, Stoffel RH, Koch WJ, Lefkowitz RJ (1996) Phosphatidylinositol 4,5-bisphosphate (PIP2)-enhanced G protein-coupled receptor kinase (GRK) activity. Location, structure, and regulation of the PIP2 binding site distinguishes the GRK subfamilies. J Biol Chem 271(40):24907–24913

    Article  CAS  PubMed  Google Scholar 

  34. Boguth CA, Singh P, Huang CC, Tesmer JJ (2010) Molecular basis for activation of G protein-coupled receptor kinases. EMBO J 29(19):3249–3259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kohout TA, Lefkowitz RJ (2003) Regulation of G protein-coupled receptor kinases and arrestins during receptor desensitization. Mol Pharmacol 63(1):9–18

    Article  CAS  PubMed  Google Scholar 

  36. Jaber M, Koch WJ, Rockman H, Smith B, Bond RA, Sulik KK, Ross J Jr, Lefkowitz RJ, Caron MG, Giros B (1996) Essential role of beta-adrenergic receptor kinase 1 in cardiac development and function. Proc Natl Acad Sci U S A 93(23):12974–12979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Taneja M, Salim S, Saha K, Happe HK, Qutna N, Petty F, Bylund DB, Eikenburg DC (2011) Differential effects of inescapable stress on locus coeruleus GRK3, alpha2-adrenoceptor and CRF1 receptor levels in learned helpless and non-helpless rats: a potential link to stress resilience. Behav Brain Res 221(1):25–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bawa T, Altememi GF, Eikenburg DC, Standifer KM (2003) Desensitization of alpha 2A-adrenoceptor signalling by modest levels of adrenaline is facilitated by beta 2-adrenoceptor-dependent GRK3 up-regulation. Br J Pharmacol 138(5):921–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Peppel K, Boekhoff I, McDonald P, Breer H, Caron MG, Lefkowitz RJ (1997) G protein-coupled receptor kinase 3 (GRK3) gene disruption leads to loss of odorant receptor desensitization. J Biol Chem 272(41):25425–25428

    Article  CAS  PubMed  Google Scholar 

  40. Gainetdinov RR, Bohn LM, Walker JK, Laporte SA, Macrae AD, Caron MG, Lefkowitz RJ, Premont RT (1999) Muscarinic supersensitivity and impaired receptor desensitization in G protein-coupled receptor kinase 5-deficient mice. Neuron 24(4):1029–1036

    Article  CAS  PubMed  Google Scholar 

  41. Gainetdinov RR, Bohn LM, Sotnikova TD, Cyr M, Laakso A, Macrae AD, Torres GE, Kim KM, Lefkowitz RJ, Caron MG, Premont RT (2003) Dopaminergic supersensitivity in G protein-coupled receptor kinase 6-deficient mice. Neuron 38(2):291–303

    Article  CAS  PubMed  Google Scholar 

  42. Penela P, Ribas C, Mayor F Jr (2003) Mechanisms of regulation of the expression and function of G protein-coupled receptor kinases. Cell Signal 15(11):973–981

    Article  CAS  PubMed  Google Scholar 

  43. Chen CK, Zhang K, Church-Kopish J, Huang W, Zhang H, Chen YJ, Frederick JM, Baehr W (2001) Characterization of human GRK7 as a potential cone opsin kinase. Mol Vis 7:305–313

    CAS  PubMed  Google Scholar 

  44. Somers RL, Klein DC (1984) Rhodopsin kinase activity in the mammalian pineal gland and other tissues. Science 226(4671):182–184

    Article  CAS  PubMed  Google Scholar 

  45. Yamamoto S, Sippel KC, Berson EL, Dryja TP (1997) Defects in the rhodopsin kinase gene in the Oguchi form of stationary night blindness. Nat Genet 15(2):175–178

    Article  CAS  PubMed  Google Scholar 

  46. Premont RT, Macrae AD, Stoffel RH, Chung N, Pitcher JA, Ambrose C, Inglese J, MacDonald ME, Lefkowitz RJ (1996) Characterization of the G protein-coupled receptor kinase GRK4. Identification of four splice variants. J Biol Chem 271(11):6403–6410

    Article  CAS  PubMed  Google Scholar 

  47. Sallese M, Salvatore L, D’Urbano E, Sala G, Storto M, Launey T, Nicoletti F, Knopfel T, De Blasi A (2000) The G-protein-coupled receptor kinase GRK4 mediates homologous desensitization of metabotropic glutamate receptor 1. FASEB J 14(15):2569–2580

    Article  CAS  PubMed  Google Scholar 

  48. Felder RA, Sanada H, Xu J, Yu PY, Wang Z, Watanabe H, Asico LD, Wang W, Zheng S, Yamaguchi I, Williams SM, Gainer J, Brown NJ, Hazen-Martin D, Wong LJ, Robillard JE, Carey RM, Eisner GM, Jose PA (2002) G protein-coupled receptor kinase 4 gene variants in human essential hypertension. Proc Natl Acad Sci U S A 99(6):3872–3877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Villar VA, Jones JE, Armando I, Palmes-Saloma C, Yu P, Pascua AM, Keever L, Arnaldo FB, Wang Z, Luo Y, Felder RA, Jose PA (2009) G protein-coupled receptor kinase 4 (GRK4) regulates the phosphorylation and function of the dopamine D3 receptor. J Biol Chem 284(32):21425–21434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Brenninkmeijer CB, Price SA, Lopez Bernal A, Phaneuf S (1999) Expression of G-protein-coupled receptor kinases in pregnant term and non-pregnant human myometrium. J Endocrinol 162(3):401–408

    Article  CAS  PubMed  Google Scholar 

  51. Aguero J, Almenar L, D’Ocon P, Oliver E, Monto F, Moro J, Castello A, Rueda J, Martinez-Dolz L, Sanchez-Lazaro I, Montero JA (2008) Correlation between beta-adrenoceptors and G-protein-coupled receptor kinases in pretransplantation heart failure. Transplant Proc 40(9):3014–3016

    Article  CAS  PubMed  Google Scholar 

  52. Dzimiri N, Muiya P, Andres E, Al-Halees Z (2004) Differential functional expression of human myocardial G protein receptor kinases in left ventricular cardiac diseases. Eur J Pharmacol 489(3):167–177

    Article  CAS  PubMed  Google Scholar 

  53. Inglese J, Freedman NJ, Koch WJ, Lefkowitz RJ (1993) Structure and mechanism of the G protein-coupled receptor kinases. J Biol Chem 268(32):23735–23738

    CAS  PubMed  Google Scholar 

  54. Monto F, Oliver E, Vicente D, Rueda J, Aguero J, Almenar L, Ivorra MD, Barettino D, D’Ocon P (2012) Different expression of adrenoceptors and GRKs in the human myocardium depends on heart failure etiology and correlates to clinical variables. Am J Physiol Heart Circ Physiol 303(3):H368–H376

    Article  CAS  PubMed  Google Scholar 

  55. Violin JD, Ren XR, Lefkowitz RJ (2006) G-protein-coupled receptor kinase specificity for beta-arrestin recruitment to the beta2-adrenergic receptor revealed by fluorescence resonance energy transfer. J Biol Chem 281(29):20577–20588

    Article  CAS  PubMed  Google Scholar 

  56. Bownds D, Dawes J, Miller J, Stahlman M (1972) Phosphorylation of frog photoreceptor membranes induced by light. Nat New Biol 237(73):125–127

    Article  CAS  PubMed  Google Scholar 

  57. Kuhn H, Dreyer WJ (1972) Light dependent phosphorylation of rhodopsin by ATP. FEBS Lett 20(1):1–6

    Article  PubMed  Google Scholar 

  58. Weller M, Virmaux N, Mandel P (1975) Light-stimulated phosphorylation of rhodopsin in the retina: the presence of a protein kinase that is specific for photobleached rhodopsin. Proc Natl Acad Sci U S A 72(1):381–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Weller M, Virmaux N (1975) Proceedings: the role of rhodopsin phosphorylation in the control of permeability of rod segment discs to Ca2+. Exp Eye Res 20(2):185

    Article  CAS  PubMed  Google Scholar 

  60. Weller M, Virmaux N, Mandel P (1975) Role of light and rhodopsin phosphorylation in control of permeability of retinal rod outer segment disks to Ca2plus. Nature 256(5512):68–70

    Article  CAS  PubMed  Google Scholar 

  61. Weller M, Goridis C, Viramaux N, Mandel P (1975) Letter: a hypothetical model for the possible involvement of rhodopsin phosphorylation in light and dark adaptation in the retina. Exp Eye Res 21(4):405–408

    Article  CAS  PubMed  Google Scholar 

  62. Liebman PA, Pugh EN Jr (1980) ATP mediates rapid reversal of cyclic GMP phosphodiesterase activation in visual receptor membranes. Nature 287(5784):734–736

    Article  CAS  PubMed  Google Scholar 

  63. Stadel JM, Nambi P, Shorr RG, Sawyer DF, Caron MG, Lefkowitz RJ (1983) Catecholamine-induced desensitization of turkey erythrocyte adenylate cyclase is associated with phosphorylation of the beta-adrenergic receptor. Proc Natl Acad Sci U S A 80(11):3173–3177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Stadel JM, Nambi P, Shorr RG, Sawyer DF, Caron MG, Lefkowitz RJ (1983) Phosphorylation of the beta-adrenergic receptor accompanies catecholamine-induced desensitization of turkey erythrocyte adenylate cyclase. Trans Assoc Am Physicians 96:137–145

    CAS  PubMed  Google Scholar 

  65. Sibley DR, Strasser RH, Caron MG, Lefkowitz RJ (1985) Homologous desensitization of adenylate cyclase is associated with phosphorylation of the beta-adrenergic receptor. J Biol Chem 260(7):3883–3886

    CAS  PubMed  Google Scholar 

  66. Carman CV, Benovic JL (1998) G-protein-coupled receptors: turn-ons and turn-offs. Curr Opin Neurobiol 8(3):335–344

    Article  CAS  PubMed  Google Scholar 

  67. Stadel JM, Nambi P, Lavin TN, Heald SL, Caron MG, Lefkowitz RJ (1982) Catecholamine-induced desensitization of turkey erythrocyte adenylate cyclase. Structural alterations in the beta-adrenergic receptor revealed by photoaffinity labeling. J Biol Chem 257(16):9242–9245

    CAS  PubMed  Google Scholar 

  68. Lorenz W, Inglese J, Palczewski K, Onorato JJ, Caron MG, Lefkowitz RJ (1991) The receptor kinase family: primary structure of rhodopsin kinase reveals similarities to the beta-adrenergic receptor kinase. Proc Natl Acad Sci U S A 88(19):8715–8719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Strasser RH, Benovic JL, Caron MG, Lefkowitz RJ (1986) Beta-agonist- and prostaglandin E1-induced translocation of the beta-adrenergic receptor kinase: evidence that the kinase may act on multiple adenylate cyclase-coupled receptors. Proc Natl Acad Sci U S A 83(17):6362–6366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sibley DR, Strasser RH, Benovic JL, Daniel K, Lefkowitz RJ (1986) Phosphorylation/dephosphorylation of the beta-adrenergic receptor regulates its functional coupling to adenylate cyclase and subcellular distribution. Proc Natl Acad Sci U S A 83(24):9408–9412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Benovic JL, Mayor F Jr, Somers RL, Caron MG, Lefkowitz RJ (1986) Light-dependent phosphorylation of rhodopsin by beta-adrenergic receptor kinase. Nature 321(6073):869–872

    Article  CAS  PubMed  Google Scholar 

  72. Benovic JL, Kuhn H, Weyand I, Codina J, Caron MG, Lefkowitz RJ (1987) Functional desensitization of the isolated beta-adrenergic receptor by the beta-adrenergic receptor kinase: potential role of an analog of the retinal protein arrestin (48-kDa protein). Proc Natl Acad Sci U S A 84(24):8879–8882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ramkumar V, Kwatra M, Benovic JL, Stiles GL, Stilesa GL (1993) Functional consequences of A1 adenosine-receptor phosphorylation by the beta-adrenergic receptor kinase. Biochim Biophys Acta 1179(1):89–97

    Article  CAS  PubMed  Google Scholar 

  74. Richardson RM, Kim C, Benovic JL, Hosey MM (1993) Phosphorylation and desensitization of human m2 muscarinic cholinergic receptors by two isoforms of the beta-adrenergic receptor kinase. J Biol Chem 268(18):13650–13656

    CAS  PubMed  Google Scholar 

  75. Collins S, Bouvier M, Lohse MJ, Benovic JL, Caron MG, Lefkowitz RJ (1990) Mechanisms involved in adrenergic receptor desensitization. Biochem Soc Trans 18(4):541–544

    Article  CAS  PubMed  Google Scholar 

  76. Lohse MJ, Benovic JL, Codina J, Caron MG, Lefkowitz RJ (1990) beta-Arrestin: a protein that regulates beta-adrenergic receptor function. Science 248(4962):1547–1550

    Article  CAS  PubMed  Google Scholar 

  77. Gurevich VV, Dion SB, Onorato JJ, Ptasienski J, Kim CM, Sterne-Marr R, Hosey MM, Benovic JL (1995) Arrestin interactions with G protein-coupled receptors. Direct binding studies of wild type and mutant arrestins with rhodopsin, beta 2-adrenergic, and m2 muscarinic cholinergic receptors. J Biol Chem 270(2):720–731

    Article  CAS  PubMed  Google Scholar 

  78. Gurevich VV, Benovic JL (1993) Visual arrestin interaction with rhodopsin. Sequential multisite binding ensures strict selectivity toward light-activated phosphorylated rhodopsin. J Biol Chem 268(16):11628–11638

    CAS  PubMed  Google Scholar 

  79. Ferguson SS, Downey WE 3rd, Colapietro AM, Barak LS, Menard L, Caron MG (1996) Role of beta-arrestin in mediating agonist-promoted G protein-coupled receptor internalization. Science 271(5247):363–366

    Article  CAS  PubMed  Google Scholar 

  80. DeWire SM, Ahn S, Lefkowitz RJ, Shenoy SK (2007) Beta-arrestins and cell signaling. Annu Rev Physiol 69:483–510

    Article  CAS  PubMed  Google Scholar 

  81. Shenoy SK, Lefkowitz RJ (2005) Seven-transmembrane receptor signaling through beta-arrestin. Sci STKE 2005(308):cm10

    PubMed  Google Scholar 

  82. Moore CA, Milano SK, Benovic JL (2007) Regulation of receptor trafficking by GRKs and arrestins. Annu Rev Physiol 69:451–482

    Article  CAS  PubMed  Google Scholar 

  83. Laporte SA, Oakley RH, Holt JA, Barak LS, Caron MG (2000) The interaction of beta-arrestin with the AP-2 adaptor is required for the clustering of beta 2-adrenergic receptor into clathrin-coated pits. J Biol Chem 275(30):23120–23126

    Article  CAS  PubMed  Google Scholar 

  84. Krupnick JG, Goodman OB Jr, Keen JH, Benovic JL (1997) Arrestin/clathrin interaction. Localization of the clathrin binding domain of nonvisual arrestins to the carboxy terminus. J Biol Chem 272(23):15011–15016

    Article  CAS  PubMed  Google Scholar 

  85. Goodman OB Jr, Krupnick JG, Santini F, Gurevich VV, Penn RB, Gagnon AW, Keen JH, Benovic JL (1996) Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Nature 383(6599):447–450

    Article  CAS  PubMed  Google Scholar 

  86. Krupnick JG, Santini F, Gagnon AW, Keen JH, Benovic JL (1997) Modulation of the arrestin-clathrin interaction in cells. Characterization of beta-arrestin dominant-negative mutants. J Biol Chem 272(51):32507–32512

    Article  CAS  PubMed  Google Scholar 

  87. Damke H, Baba T, Warnock DE, Schmid SL (1994) Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J Cell Biol 127(4):915–934

    Article  CAS  PubMed  Google Scholar 

  88. Oakley RH, Laporte SA, Holt JA, Caron MG, Barak LS (2000) Differential affinities of visual arrestin, beta arrestin1, and beta arrestin2 for G protein-coupled receptors delineate two major classes of receptors. J Biol Chem 275(22):17201–17210

    Article  CAS  PubMed  Google Scholar 

  89. Qian H, Pipolo L, Thomas WG (2001) Association of beta-Arrestin 1 with the type 1A angiotensin II receptor involves phosphorylation of the receptor carboxyl terminus and correlates with receptor internalization. Mol Endocrinol 15(10):1706–1719

    CAS  PubMed  Google Scholar 

  90. Pals-Rylaarsdam R, Gurevich VV, Lee KB, Ptasienski JA, Benovic JL, Hosey MM (1997) Internalization of the m2 muscarinic acetylcholine receptor. Arrestin-independent and -dependent pathways. J Biol Chem 272(38):23682–23689

    Article  CAS  PubMed  Google Scholar 

  91. Vishnivetskiy SA, Paz CL, Schubert C, Hirsch JA, Sigler PB, Gurevich VV (1999) How does arrestin respond to the phosphorylated state of rhodopsin? J Biol Chem 274(17):11451–11454

    Article  CAS  PubMed  Google Scholar 

  92. Oakley RH, Laporte SA, Holt JA, Barak LS, Caron MG (1999) Association of beta-arrestin with G protein-coupled receptors during clathrin-mediated endocytosis dictates the profile of receptor resensitization. J Biol Chem 274(45):32248–32257

    Article  CAS  PubMed  Google Scholar 

  93. Reiter E, Lefkowitz RJ (2006) GRKs and beta-arrestins: roles in receptor silencing, trafficking and signaling. Trends Endocrinol Metab 17(4):159–165

    Article  CAS  PubMed  Google Scholar 

  94. Luttrell LM (2008) Reviews in molecular biology and biotechnology: transmembrane signaling by G protein-coupled receptors. Mol Biotechnol 39(3):239–264

    Article  CAS  PubMed  Google Scholar 

  95. Luttrell LM, Gesty-Palmer D (2010) Beyond desensitization: physiological relevance of arrestin-dependent signaling. Pharmacol Rev 62(2):305–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Whalen EJ, Rajagopal S, Lefkowitz RJ (2011) Therapeutic potential of beta-arrestin- and G protein-biased agonists. Trends Mol Med 17(3):126–139

    Article  CAS  PubMed  Google Scholar 

  97. Lefkowitz RJ (2007) Seven transmembrane receptors: something old, something new. Acta Physiol (Oxford) 190(1):9–19

    Article  CAS  Google Scholar 

  98. Rajagopal S, Rajagopal K, Lefkowitz RJ (2010) Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nat Rev Drug Discov 9(5):373–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Luttrell LM, Ferguson SS, Daaka Y, Miller WE, Maudsley S, Della Rocca GJ, Lin F, Kawakatsu H, Owada K, Luttrell DK, Caron MG, Lefkowitz RJ (1999) Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science 283(5402):655–661

    Article  CAS  PubMed  Google Scholar 

  100. Xiao K, McClatchy DB, Shukla AK, Zhao Y, Chen M, Shenoy SK, Yates JR 3rd, Lefkowitz RJ (2007) Functional specialization of beta-arrestin interactions revealed by proteomic analysis. Proc Natl Acad Sci U S A 104(29):12011–12016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kim IM, Tilley DG, Chen J, Salazar NC, Whalen EJ, Violin JD, Rockman HA (2008) Beta-blockers alprenolol and carvedilol stimulate beta-arrestin-mediated EGFR transactivation. Proc Natl Acad Sci U S A 105(38):14555–14560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wisler JW, DeWire SM, Whalen EJ, Violin JD, Drake MT, Ahn S, Shenoy SK, Lefkowitz RJ (2007) A unique mechanism of beta-blocker action: carvedilol stimulates beta-arrestin signaling. Proc Natl Acad Sci U S A 104(42):16657–16662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zidar DA, Violin JD, Whalen EJ, Lefkowitz RJ (2009) Selective engagement of G protein coupled receptor kinases (GRKs) encodes distinct functions of biased ligands. Proc Natl Acad Sci U S A 106(24):9649–9654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Oppermann M, Freedman NJ, Alexander RW, Lefkowitz RJ (1996) Phosphorylation of the type 1A angiotensin II receptor by G protein-coupled receptor kinases and protein kinase C. J Biol Chem 271(22):13266–13272

    Article  CAS  PubMed  Google Scholar 

  105. Kohout TA, Nicholas SL, Perry SJ, Reinhart G, Junger S, Struthers RS (2004) Differential desensitization, receptor phosphorylation, beta-arrestin recruitment, and ERK1/2 activation by the two endogenous ligands for the CC chemokine receptor 7. J Biol Chem 279(22):23214–23222

    Article  CAS  PubMed  Google Scholar 

  106. Busillo JM, Armando S, Sengupta R, Meucci O, Bouvier M, Benovic JL (2010) Site-specific phosphorylation of CXCR4 is dynamically regulated by multiple kinases and results in differential modulation of CXCR4 signaling. J Biol Chem 285(10):7805–7817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Mueller W, Schutz D, Nagel F, Schulz S, Stumm R (2013) Hierarchical organization of multi-site phosphorylation at the CXCR4 C terminus. PLoS One 8(5):e64975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Raghuwanshi SK, Su Y, Singh V, Haynes K, Richmond A, Richardson RM (2012) The chemokine receptors CXCR1 and CXCR2 couple to distinct G protein-coupled receptor kinases to mediate and regulate leukocyte functions. J Immunol 189(6):2824–2832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lipfert J, Odemis V, Engele J (2013) Grk2 is an essential regulator of CXCR7 signalling in astrocytes. Cell Mol Neurobiol 33(1):111–118

    Article  CAS  PubMed  Google Scholar 

  110. Zhang X, Wang F, Chen X, Chen Y, Ma L (2008) Post-endocytic fates of delta-opioid receptor are regulated by GRK2-mediated receptor phosphorylation and distinct beta-arrestin isoforms. J Neurochem 106(2):781–792

    Article  CAS  PubMed  Google Scholar 

  111. Arttamangkul S, Lau EK, Lu HW, Williams JT (2012) Desensitization and trafficking of mu-opioid receptors in locus ceruleus neurons: modulation by kinases. Mol Pharmacol 81(3):348–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bailey CP, Kelly E, Henderson G (2004) Protein kinase C activation enhances morphine-induced rapid desensitization of mu-opioid receptors in mature rat locus ceruleus neurons. Mol Pharmacol 66(6):1592–1598

    Article  CAS  PubMed  Google Scholar 

  113. Bailey CP, Oldfield S, Llorente J, Caunt CJ, Teschemacher AG, Roberts L, McArdle CA, Smith FL, Dewey WL, Kelly E, Henderson G (2009) Involvement of PKC alpha and G-protein-coupled receptor kinase 2 in agonist-selective desensitization of mu-opioid receptors in mature brain neurons. Br J Pharmacol 158(1):157–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hurle MA (2001) Changes in the expression of G protein-coupled receptor kinases and beta-arrestin 2 in rat brain during opioid tolerance and supersensitivity. J Neurochem 77(2):486–492

    Article  CAS  PubMed  Google Scholar 

  115. Johnson EA, Oldfield S, Braksator E, Gonzalez-Cuello A, Couch D, Hall KJ, Mundell SJ, Bailey CP, Kelly E, Henderson G (2006) Agonist-selective mechanisms of mu-opioid receptor desensitization in human embryonic kidney 293 cells. Mol Pharmacol 70(2):676–685

    Article  CAS  PubMed  Google Scholar 

  116. Kelly E, Bailey CP, Henderson G (2008) Agonist-selective mechanisms of GPCR desensitization. Br J Pharmacol 153(Suppl 1):S379–S388

    CAS  PubMed  Google Scholar 

  117. Zhang J, Ferguson SS, Barak LS, Bodduluri SR, Laporte SA, Law PY, Caron MG (1998) Role for G protein-coupled receptor kinase in agonist-specific regulation of mu-opioid receptor responsiveness. Proc Natl Acad Sci U S A 95(12):7157–7162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhang J, Ferguson SS, Law PY, Barak LS, Caron MG (1999) Agonist-specific regulation of delta-opioid receptor trafficking by G protein-coupled receptor kinase and beta-arrestin. J Recept Signal Transduct Res 19(1-4):301–313

    Article  CAS  PubMed  Google Scholar 

  119. Nickolls SA, Humphreys S, Clark M, McMurray G (2013) Co-expression of GRK2 reveals a novel conformational state of the micro-opioid receptor. PLoS One 8(12), e83691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Cao J, Panetta R, Yue S, Steyaert A, Young-Bellido M, Ahmad S (2003) A naive Bayes model to predict coupling between seven transmembrane domain receptors and G-proteins. Bioinformatics 19(2):234–240

    Article  CAS  PubMed  Google Scholar 

  121. Holopainen I, Wojcik WJ (1993) A specific antisense oligodeoxynucleotide to mRNAs encoding receptors with seven transmembrane spanning regions decreases muscarinic m2 and gamma-aminobutyric acidB receptors in rat cerebellar granule cells. J Pharmacol Exp Ther 264(1):423–430

    CAS  PubMed  Google Scholar 

  122. Watanabe H, Xu J, Bengra C, Jose PA, Felder RA (2002) Desensitization of human renal D1 dopamine receptors by G protein-coupled receptor kinase 4. Kidney Int 62(3):790–798

    Article  CAS  PubMed  Google Scholar 

  123. Ito K, Haga T, Lameh J, Sadee W (1999) Sequestration of dopamine D2 receptors depends on coexpression of G-protein-coupled receptor kinases 2 or 5. Eur J Biochem 260(1):112–119

    Article  CAS  PubMed  Google Scholar 

  124. Cho D, Zheng M, Min C, Ma L, Kurose H, Park JH, Kim KM (2010) Agonist-induced endocytosis and receptor phosphorylation mediate resensitization of dopamine D(2) receptors. Mol Endocrinol 24(3):574–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Cho DI, Zheng M, Min C, Kwon KJ, Shin CY, Choi HK, Kim KM (2013) ARF6 and GASP-1 are post-endocytic sorting proteins selectively involved in the intracellular trafficking of dopamine D(2) receptors mediated by GRK and PKC in transfected cells. Br J Pharmacol 168(6):1355–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ohguro H, Palczewski K, Ericsson LH, Walsh KA, Johnson RS (1993) Sequential phosphorylation of rhodopsin at multiple sites. Biochemistry 32(21):5718–5724

    Article  CAS  PubMed  Google Scholar 

  127. Liu Q, Dewi DA, Liu W, Bee MS, Schonbrunn A (2008) Distinct phosphorylation sites in the SST2A somatostatin receptor control internalization, desensitization, and arrestin binding. Mol Pharmacol 73(2):292–304

    Article  CAS  PubMed  Google Scholar 

  128. Su Y, Ospina JK, Zhang J, Michelson AP, Schoen AM, Zhu AJ (2011) Sequential phosphorylation of smoothened transduces graded hedgehog signaling. Sci Signal 4(180):ra43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Tran TM, Friedman J, Qunaibi E, Baameur F, Moore RH, Clark RB (2004) Characterization of agonist stimulation of cAMP-dependent protein kinase and G protein-coupled receptor kinase phosphorylation of the beta2-adrenergic receptor using phosphoserine-specific antibodies. Mol Pharmacol 65(1):196–206

    Article  CAS  PubMed  Google Scholar 

  130. Tran TM, Jorgensen R, Clark RB (2007) Phosphorylation of the beta2-adrenergic receptor in plasma membranes by intrinsic GRK5. Biochemistry 46(50):14438–14449

    Article  CAS  PubMed  Google Scholar 

  131. Fredericks ZL, Pitcher JA, Lefkowitz RJ (1996) Identification of the G protein-coupled receptor kinase phosphorylation sites in the human beta2-adrenergic receptor. J Biol Chem 271(23):13796–13803

    Article  CAS  PubMed  Google Scholar 

  132. Hausdorff WP, Bouvier M, O’Dowd BF, Irons GP, Caron MG, Lefkowitz RJ (1989) Phosphorylation sites on two domains of the beta 2-adrenergic receptor are involved in distinct pathways of receptor desensitization. J Biol Chem 264(21):12657–12665

    CAS  PubMed  Google Scholar 

  133. Krasel C, Zabel U, Lorenz K, Reiner S, Al-Sabah S, Lohse MJ (2008) Dual role of the beta2-adrenergic receptor C terminus for the binding of beta-arrestin and receptor internalization. J Biol Chem 283(46):31840–31848

    Article  CAS  PubMed  Google Scholar 

  134. Trester-Zedlitz M, Burlingame A, Kobilka B, von Zastrow M (2005) Mass spectrometric analysis of agonist effects on posttranslational modifications of the beta-2 adrenoceptor in mammalian cells. Biochemistry 44(16):6133–6143

    Article  CAS  PubMed  Google Scholar 

  135. Bouvier M, Hausdorff WP, De Blasi A, O’Dowd BF, Kobilka BK, Caron MG, Lefkowitz RJ (1988) Removal of phosphorylation sites from the beta 2-adrenergic receptor delays onset of agonist-promoted desensitization. Nature 333(6171):370–373

    Article  CAS  PubMed  Google Scholar 

  136. Tobin AB (2008) G-protein-coupled receptor phosphorylation: where, when and by whom. Br J Pharmacol 153(Suppl 1):S167–S176

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Tobin AB, Butcher AJ, Kong KC (2008) Location, location, location…site-specific GPCR phosphorylation offers a mechanism for cell-type-specific signalling. Trends Pharmacol Sci 29(8):413–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Charfi I, Nagi K, Mnie-Filali O, Thibault D, Balboni G, Schiller PW, Trudeau LE, Pineyro G (2014) Ligand- and cell-dependent determinants of internalization and cAMP modulation by delta opioid receptor (DOR) agonists. Cell Mol Life Sci 71(8):1529–1546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kenakin T (1996) The classification of seven transmembrane receptors in recombinant expression systems. Pharmacol Rev 48(3):413–463

    CAS  PubMed  Google Scholar 

  140. Stacey M, Lin HH, Gordon S, McKnight AJ (2000) LNB-TM7, a group of seven-transmembrane proteins related to family-B G-protein-coupled receptors. Trends Biochem Sci 25(6):284–289

    Article  CAS  PubMed  Google Scholar 

  141. Schulz R, Wehmeyer A, Schulz K (2002) Visualizing preference of G protein-coupled receptor kinase 3 for the process of kappa-opioid receptor sequestration. Mol Pharmacol 61(6):1444–1452

    Article  CAS  PubMed  Google Scholar 

  142. Curnow KM (1995) Expression cloning of type 2 angiotension II receptor reveals a unique class of seven-transmembrane receptors. J Endocrinol Invest 18(7):566–570

    Article  CAS  PubMed  Google Scholar 

  143. Just S, Illing S, Trester-Zedlitz M, Lau EK, Kotowski SJ, Miess E, Mann A, Doll C, Trinidad JC, Burlingame AL, von Zastrow M, Schulz S (2013) Differentiation of opioid drug effects by hierarchical multi-site phosphorylation. Mol Pharmacol 83(3):633–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Mandyam CD, Thakker DR, Christensen JL, Standifer KM (2002) Orphanin FQ/nociceptin-mediated desensitization of opioid receptor-like 1 receptor and mu opioid receptors involves protein kinase C: a molecular mechanism for heterologous cross-talk. J Pharmacol Exp Ther 302(2):502–509

    Article  CAS  PubMed  Google Scholar 

  145. Thakker DR, Standifer KM (2002) Induction of G protein-coupled receptor kinases 2 and 3 contributes to the cross-talk between mu and ORL1 receptors following prolonged agonist exposure. Neuropharmacology 43(6):979–990

    Article  CAS  PubMed  Google Scholar 

  146. Kovoor A, Celver JP, Wu A, Chavkin C (1998) Agonist induced homologous desensitization of mu-opioid receptors mediated by G protein-coupled receptor kinases is dependent on agonist efficacy. Mol Pharmacol 54(4):704–711

    CAS  PubMed  Google Scholar 

  147. Li J, Li JG, Chen C, Zhang F, Liu-Chen LY (2002) Molecular basis of differences in (-)(trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidiny)-cyclohexyl]benzeneacetamide -induced desensitization and phosphorylation between human and rat kappa-opioid receptors expressed in Chinese hamster ovary cells. Mol Pharmacol 61(1):73–84

    Article  CAS  PubMed  Google Scholar 

  148. Li JG, Benovic JL, Liu-Chen LY (2000) Mechanisms of agonist-induced down-regulation of the human kappa-opioid receptor: internalization is required for down-regulation. Mol Pharmacol 58(4):795–801

    CAS  PubMed  Google Scholar 

  149. Li JG, Luo LY, Krupnick JG, Benovic JL, Liu-Chen LY (1999) U50,488H-induced internalization of the human kappa opioid receptor involves a beta-arrestin- and dynamin-dependent mechanism. Kappa receptor internalization is not required for mitogen-activated protein kinase activation. J Biol Chem 274(17):12087–12094

    Article  CAS  PubMed  Google Scholar 

  150. Nobles KN, Xiao K, Ahn S, Shukla AK, Lam CM, Rajagopal S, Strachan RT, Huang TY, Bressler EA, Hara MR, Shenoy SK, Gygi SP, Lefkowitz RJ (2011) Distinct phosphorylation sites on the beta(2)-adrenergic receptor establish a barcode that encodes differential functions of beta-arrestin. Sci Signal 4(185):ra51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Aramori I, Ferguson SS, Bieniasz PD, Zhang J, Cullen B, Cullen MG (1997) Molecular mechanism of desensitization of the chemokine receptor CCR-5: receptor signaling and internalization are dissociable from its role as an HIV-1 co-receptor. EMBO J 16(15):4606–4616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Mills A, Duggan MJ (1993) Orphan seven transmembrane domain receptors: reversing pharmacology. Trends Pharmacol Sci 14(11):394–396

    Article  CAS  PubMed  Google Scholar 

  153. Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER 3rd, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y, Shiloh Y, Gygi SP, Elledge SJ (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316(5828):1160–1166

    Article  CAS  PubMed  Google Scholar 

  154. Mills A, Duggan MJ (1994) Orphan seven transmembrane domain receptors: reversing pharmacology. Trends Biotechnol 12(2):47–49

    Article  CAS  PubMed  Google Scholar 

  155. Charest PG, Terrillon S, Bouvier M (2005) Monitoring agonist-promoted conformational changes of beta-arrestin in living cells by intramolecular BRET. EMBO Rep 6(4):334–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Shukla AK, Violin JD, Whalen EJ, Gesty-Palmer D, Shenoy SK, Lefkowitz RJ (2008) Distinct conformational changes in beta-arrestin report biased agonism at seven-transmembrane receptors. Proc Natl Acad Sci U S A 105(29):9988–9993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Nobles KN, Guan Z, Xiao K, Oas TG, Lefkowitz RJ (2007) The active conformation of beta-arrestin1: direct evidence for the phosphate sensor in the N-domain and conformational differences in the active states of beta-arrestins1 and -2. J Biol Chem 282(29):21370–21381

    Article  CAS  PubMed  Google Scholar 

  158. Xiao K, Shenoy SK, Nobles K, Lefkowitz RJ (2004) Activation-dependent conformational changes in {beta}-arrestin 2. J Biol Chem 279(53):55744–55753

    Article  CAS  PubMed  Google Scholar 

  159. Shukla AK, Manglik A, Kruse AC, Xiao K, Reis RI, Tseng WC, Staus DP, Hilger D, Uysal S, Huang LY, Paduch M, Tripathi-Shukla P, Koide A, Koide S, Weis WI, Kossiakoff AA, Kobilka BK, Lefkowitz RJ (2013) Structure of active beta-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Nature 497(7447):137–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Han M, Gurevich VV, Vishnivetskiy SA, Sigler PB, Schubert C (2001) Crystal structure of beta-arrestin at 1.9 A: possible mechanism of receptor binding and membrane translocation. Structure 9(9):869–880

    Article  CAS  PubMed  Google Scholar 

  161. Milano SK, Pace HC, Kim YM, Brenner C, Benovic JL (2002) Scaffolding functions of arrestin-2 revealed by crystal structure and mutagenesis. Biochemistry 41(10):3321–3328

    Article  CAS  PubMed  Google Scholar 

  162. Hirsch JA, Schubert C, Gurevich VV, Sigler PB (1999) The 2.8 A crystal structure of visual arrestin: a model for arrestin’s regulation. Cell 97(2):257–269

    Article  CAS  PubMed  Google Scholar 

  163. Kim M, Vishnivetskiy SA, Van Eps N, Alexander NS, Cleghorn WM, Zhan X, Hanson SM, Morizumi T, Ernst OP, Meiler J, Gurevich VV, Hubbell WL (2012) Conformation of receptor-bound visual arrestin. Proc Natl Acad Sci U S A 109(45):18407–18412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Gurevich EV, Gurevich VV (2006) Arrestins: ubiquitous regulators of cellular signaling pathways. Genome Biol 7(9):236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Yang F, Yu X, Liu C, Qu CX, Gong Z, Liu HD, Li FH, Wang HM, He DF, Yi F, Song C, Tian CL, Xiao KH, Wang JY, Sun JP (2015) Phospho-selective mechanisms of arrestin conformations and functions revealed by unnatural amino acid incorporation and (19)F-NMR. Nat Commun 6:8202

    Article  PubMed  PubMed Central  Google Scholar 

  166. Wisler JW, Xiao K, Thomsen AR, Lefkowitz RJ (2014) Recent developments in biased agonism. Curr Opin Cell Biol 27:18–24

    Article  CAS  PubMed  Google Scholar 

  167. Feng YH, Ding Y, Ren S, Zhou L, Xu C, Karnik SS (2005) Unconventional homologous internalization of the angiotensin II type-1 receptor induced by G-protein-independent signals. Hypertension 46(2):419–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Heitzler D, Durand G, Gallay N, Rizk A, Ahn S, Kim J, Violin JD, Dupuy L, Gauthier C, Piketty V, Crepieux P, Poupon A, Clement F, Fages F, Lefkowitz RJ, Reiter E (2012) Competing G protein-coupled receptor kinases balance G protein and beta-arrestin signaling. Mol Syst Biol 8:590

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Diviani D, Lattion AL, Cotecchia S (1997) Characterization of the phosphorylation sites involved in G protein-coupled receptor kinase- and protein kinase C-mediated desensitization of the alpha1B-adrenergic receptor. J Biol Chem 272(45):28712–28719

    Article  CAS  PubMed  Google Scholar 

  170. Desai AN, Salim S, Standifer KM, Eikenburg DC (2006) Involvement of G protein-coupled receptor kinase (GRK) 3 and GRK2 in down-regulation of the alpha2B-adrenoceptor. J Pharmacol Exp Ther 317(3):1027–1035

    Article  CAS  PubMed  Google Scholar 

  171. Desai AN, Standifer KM, Eikenburg DC (2005) Cellular G protein-coupled receptor kinase levels regulate sensitivity of the {alpha}2b-adrenergic receptor to undergo agonist-induced down-regulation. J Pharmacol Exp Ther 312(2):767–773

    Article  CAS  PubMed  Google Scholar 

  172. Fu Q, Xu B, Parikh D, Cervantes D, Xiang YK (2015) Insulin induces IRS2-dependent and GRK2-mediated beta2AR internalization to attenuate betaAR signaling in cardiomyocytes. Cell Signal 27(3):707–715

    Article  CAS  PubMed  Google Scholar 

  173. Tutunea-Fatan E, Caetano FA, Gros R, Ferguson SS (2015) GRK2 targeted knock-down results in spontaneous hypertension, and altered vascular GPCR signaling. J Biol Chem 290(8):5141–5155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Dehvari N, Hutchinson DS, Nevzorova J, Dallner OS, Sato M, Kocan M, Merlin J, Evans BA, Summers RJ, Bengtsson T (2012) beta(2)-Adrenoceptors increase translocation of GLUT4 via GPCR kinase sites in the receptor C-terminal tail. Br J Pharmacol 165(5):1442–1456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Zhu W, Petrashevskaya N, Ren S, Zhao A, Chakir K, Gao E, Chuprun JK, Wang Y, Talan M, Dorn GW 2nd, Lakatta EG, Koch WJ, Feldman AM, Xiao RP (2012) Gi-biased beta2AR signaling links GRK2 upregulation to heart failure. Circ Res 110(2):265–274

    Article  CAS  PubMed  Google Scholar 

  176. Zhu W, Tilley DG, Myers VD, Coleman RC, Feldman AM (2013) Arginine vasopressin enhances cell survival via a G protein-coupled receptor kinase 2/beta-arrestin1/extracellular-regulated kinase 1/2-dependent pathway in H9c2 cells. Mol Pharmacol 84(2):227–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Orsini MJ, Parent JL, Mundell SJ, Marchese A, Benovic JL (1999) Trafficking of the HIV coreceptor CXCR4. Role of arrestins and identification of residues in the c-terminal tail that mediate receptor internalization. J Biol Chem 274(43):31076–31086

    Article  CAS  PubMed  Google Scholar 

  178. Clift IC, Bamidele AO, Rodriguez-Ramirez C, Kremer KN, Hedin KE (2014) beta-Arrestin1 and distinct CXCR4 structures are required for stromal derived factor-1 to downregulate CXCR4 cell-surface levels in neuroblastoma. Mol Pharmacol 85(4):542–552

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Tong X, Zhang L, Zhang L, Hu M, Leng J, Yu B, Zhou B, Hu Y, Zhang Q (2009) The mechanism of chemokine receptor 9 internalization triggered by interleukin 2 and interleukin 4. Cell Mol Immunol 6(3):181–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Tiberi M, Nash SR, Bertrand L, Lefkowitz RJ, Caron MG (1996) Differential regulation of dopamine D1A receptor responsiveness by various G protein-coupled receptor kinases. J Biol Chem 271(7):3771–3778

    Article  CAS  PubMed  Google Scholar 

  181. Namkung Y, Dipace C, Javitch JA, Sibley DR (2009) G protein-coupled receptor kinase-mediated phosphorylation regulates post-endocytic trafficking of the D2 dopamine receptor. J Biol Chem 284(22):15038–15051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Kim KM, Gainetdinov RR, Laporte SA, Caron MG, Barak LS (2005) G protein-coupled receptor kinase regulates dopamine D3 receptor signaling by modulating the stability of a receptor-filamin-beta-arrestin complex. A case of autoreceptor regulation. J Biol Chem 280(13):12774–12780

    Article  CAS  PubMed  Google Scholar 

  183. Kara E, Crepieux P, Gauthier C, Martinat N, Piketty V, Guillou F, Reiter E (2006) A phosphorylation cluster of five serine and threonine residues in the C-terminus of the follicle-stimulating hormone receptor is important for desensitization but not for beta-arrestin-mediated ERK activation. Mol Endocrinol 20(11):3014–3026

    Article  CAS  PubMed  Google Scholar 

  184. Willets JM, Taylor AH, Shaw H, Konje JC, Challiss RA (2008) Selective regulation of H1 histamine receptor signaling by G protein-coupled receptor kinase 2 in uterine smooth muscle cells. Mol Endocrinol 22(8):1893–1907

    Article  CAS  PubMed  Google Scholar 

  185. Rodriguez-Pena MS, Timmerman H, Leurs R (2000) Modulation of histamine H(2) receptor signalling by G-protein-coupled receptor kinase 2 and 3. Br J Pharmacol 131(8):1707–1715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Fernandez N, Gottardo FL, Alonso MN, Monczor F, Shayo C, Davio C (2011) Roles of phosphorylation-dependent and -independent mechanisms in the regulation of histamine H2 receptor by G protein-coupled receptor kinase 2. J Biol Chem 286(33):28697–28706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Zheng H, Worrall C, Shen H, Issad T, Seregard S, Girnita A, Girnita L (2012) Selective recruitment of G protein-coupled receptor kinases (GRKs) controls signaling of the insulin-like growth factor 1 receptor. Proc Natl Acad Sci U S A 109(18):7055–7060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Wei Z, Hurtt R, Gu T, Bodzin AS, Koch WJ, Doria C (2013) GRK2 negatively regulates IGF-1R signaling pathway and cyclins’ expression in HepG2 cells. J Cell Physiol 228(9):1897–1901

    Article  CAS  PubMed  Google Scholar 

  189. Aziziyeh AI, Li TT, Pape C, Pampillo M, Chidiac P, Possmayer F, Babwah AV, Bhattacharya M (2009) Dual regulation of lysophosphatidic acid (LPA1) receptor signalling by Ral and GRK. Cell Signal 21(7):1207–1217

    Article  CAS  PubMed  Google Scholar 

  190. Iacovelli L, Capobianco L, D’Ancona GM, Picascia A, De Blasi A (2002) Regulation of lysophosphatidic acid receptor-stimulated response by G-protein-coupled receptor kinase-2 and beta-arrestin1 in FRTL-5 rat thyroid cells. J Endocrinol 174(1):103–110

    Article  CAS  PubMed  Google Scholar 

  191. Moughal NA, Waters C, Sambi B, Pyne S, Pyne NJ (2004) Nerve growth factor signaling involves interaction between the Trk A receptor and lysophosphatidate receptor 1 systems: nuclear translocation of the lysophosphatidate receptor 1 and Trk A receptors in pheochromocytoma 12 cells. Cell Signal 16(1):127–136

    Article  CAS  PubMed  Google Scholar 

  192. Moughal NA, Waters CM, Valentine WJ, Connell M, Richardson JC, Tigyi G, Pyne S, Pyne NJ (2006) Protean agonism of the lysophosphatidic acid receptor-1 with Ki16425 reduces nerve growth factor-induced neurite outgrowth in pheochromocytoma 12 cells. J Neurochem 98(6):1920–1929

    Article  CAS  PubMed  Google Scholar 

  193. Obara Y, Okano Y, Ono S, Yamauchi A, Hoshino T, Kurose H, Nakahata N (2008) Betagamma subunits of G(i/o) suppress EGF-induced ERK5 phosphorylation, whereas ERK1/2 phosphorylation is enhanced. Cell Signal 20(7):1275–1283

    Article  CAS  PubMed  Google Scholar 

  194. Li J, Xiang B, Su W, Zhang X, Huang Y, Ma L (2003) Agonist-induced formation of opioid receptor-G protein-coupled receptor kinase (GRK)-G beta gamma complex on membrane is required for GRK2 function in vivo. J Biol Chem 278(32):30219–30226

    Article  CAS  PubMed  Google Scholar 

  195. Hong MH, Xu C, Wang YJ, Ji JL, Tao YM, Xu XJ, Chen J, Xie X, Chi ZQ, Liu JG (2009) Role of Src in ligand-specific regulation of delta-opioid receptor desensitization and internalization. J Neurochem 108(1):102–114

    Article  CAS  PubMed  Google Scholar 

  196. Marie N, Aguila B, Hasbi A, Davis A, Jauzac P, Allouche S (2008) Different kinases desensitize the human delta-opioid receptor (hDOP-R) in the neuroblastoma cell line SK-N-BE upon peptidic and alkaloid agonists. Cell Signal 20(6):1209–1220

    Article  CAS  PubMed  Google Scholar 

  197. Willets J, Kelly E (2001) Desensitization of endogenously expressed delta-opioid receptors: no evidence for involvement of G protein-coupled receptor kinase 2. Eur J Pharmacol 431(2):133–141

    Article  CAS  PubMed  Google Scholar 

  198. McLaughlin JP, Xu M, Mackie K, Chavkin C (2003) Phosphorylation of a carboxyl-terminal serine within the kappa-opioid receptor produces desensitization and internalization. J Biol Chem 278(36):34631–34640

    Article  CAS  PubMed  Google Scholar 

  199. Dang VC, Chieng B, Azriel Y, Christie MJ (2011) Cellular morphine tolerance produced by betaarrestin-2-dependent impairment of mu-opioid receptor resensitization. J Neurosci 31(19):7122–7130

    Article  CAS  PubMed  Google Scholar 

  200. Dang VC, Napier IA, Christie MJ (2009) Two distinct mechanisms mediate acute mu-opioid receptor desensitization in native neurons. J Neurosci 29(10):3322–3327

    Article  CAS  PubMed  Google Scholar 

  201. He L, Whistler JL (2011) Chronic ethanol consumption in rats produces opioid antinociceptive tolerance through inhibition of mu opioid receptor endocytosis. PLoS One 6(5), e19372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Saland LC, Chavez JB, Lee DC, Garcia RR, Caldwell KK (2008) Chronic ethanol exposure increases the association of hippocampal mu-opioid receptors with G-protein receptor kinase 2. Alcohol 42(6):493–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Lowe JD, Sanderson HS, Cooke AE, Ostovar M, Tsisanova E, Withey SL, Chavkin C, Husbands SM, Kelly E, Henderson G, Bailey CP (2015) Role of G protein-coupled receptor kinases 2 and 3 in mu-Opioid receptor desensitization and internalization. Mol Pharmacol 88(2):347–356

    Article  CAS  PubMed  Google Scholar 

  204. Huang J, Nalli AD, Mahavadi S, Kumar DP, Murthy KS (2014) Inhibition of Galphai activity by Gbetagamma is mediated by PI 3-kinase-gamma- and cSrc-dependent tyrosine phosphorylation of Galphai and recruitment of RGS12. Am J Physiol Gastrointest Liver Physiol 306(9):G802–G810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Kenski DM, Zhang C, von Zastrow M, Shokat KM (2005) Chemical genetic engineering of G protein-coupled receptor kinase 2. J Biol Chem 280(41):35051–35061

    Article  CAS  PubMed  Google Scholar 

  206. Ozaita A, Escriba PV, Ventayol P, Murga C, Mayor F Jr, Garcia-Sevilla JA (1998) Regulation of G protein-coupled receptor kinase 2 in brains of opiate-treated rats and human opiate addicts. J Neurochem 70(3):1249–1257

    Article  CAS  PubMed  Google Scholar 

  207. Malecz N, Bambino T, Bencsik M, Nissenson RA (1998) Identification of phosphorylation sites in the G protein-coupled receptor for parathyroid hormone. Receptor phosphorylation is not required for agonist-induced internalization. Mol Endocrinol 12(12):1846–1856

    Article  CAS  PubMed  Google Scholar 

  208. Luo J, Busillo JM, Benovic JL (2008) M3 muscarinic acetylcholine receptor-mediated signaling is regulated by distinct mechanisms. Mol Pharmacol 74(2):338–347

    Article  CAS  PubMed  Google Scholar 

  209. Holroyd EW, Szekeres PG, Whittaker RD, Kelly E, Edwardson JM (1999) Effect of G protein-coupled receptor kinase 2 on the sensitivity of M4 muscarinic acetylcholine receptors to agonist-induced internalization and desensitization in NG108-15 cells. J Neurochem 73(3):1236–1245

    Article  CAS  PubMed  Google Scholar 

  210. Chen Z, Gaudreau R, Le Gouill C, Rola-Pleszczynski M, Stankova J (2004) Agonist-induced internalization of leukotriene B(4) receptor 1 requires G-protein-coupled receptor kinase 2 but not arrestins. Mol Pharmacol 66(3):377–386

    CAS  PubMed  Google Scholar 

  211. Sanchez-Mas J, Guillo LA, Zanna P, Jimenez-Cervantes C, Garcia-Borron JC (2005) Role of G protein-coupled receptor kinases in the homologous desensitization of the human and mouse melanocortin 1 receptors. Mol Endocrinol 19(4):1035–1048

    Article  CAS  PubMed  Google Scholar 

  212. Freedman NJ, Ament AS, Oppermann M, Stoffel RH, Exum ST, Lefkowitz RJ (1997) Phosphorylation and desensitization of human endothelin A and B receptors. Evidence for G protein-coupled receptor kinase specificity. J Biol Chem 272(28):17734–17743

    Article  CAS  PubMed  Google Scholar 

  213. Tseng CC, Zhang XY (2000) Role of G protein-coupled receptor kinases in glucose-dependent insulinotropic polypeptide receptor signaling. Endocrinology 141(3):947–952

    CAS  PubMed  Google Scholar 

  214. Vinge LE, von Lueder TG, Aasum E, Qvigstad E, Gravning JA, How OJ, Edvardsen T, Bjornerheim R, Ahmed MS, Mikkelsen BW, Oie E, Attramadal T, Skomedal T, Smiseth OA, Koch WJ, Larsen TS, Attramadal H (2008) Cardiac-restricted expression of the carboxyl-terminal fragment of GRK3 Uncovers Distinct Functions of GRK3 in regulation of cardiac contractility and growth: GRK3 controls cardiac alpha1-adrenergic receptor responsiveness. J Biol Chem 283(16):10601–10610

    Article  CAS  PubMed  Google Scholar 

  215. Lowe JD, Celver JP, Gurevich VV, Chavkin C (2002) mu-Opioid receptors desensitize less rapidly than delta-opioid receptors due to less efficient activation of arrestin. J Biol Chem 277(18):15729–15735

    Article  CAS  PubMed  Google Scholar 

  216. Gluck L, Loktev A, Mouledous L, Mollereau C, Law PY, Schulz S (2014) Loss of morphine reward and dependence in mice lacking G protein-coupled receptor kinase 5. Biol Psychiatry 76(10):767–774

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Zhang NR, Planer W, Siuda ER, Zhao HC, Stickler L, Chang SD, Baird MA, Cao YQ, Bruchas MR (2012) Serine 363 is required for nociceptin/orphanin FQ opioid receptor (NOPR) desensitization, internalization, and arrestin signaling. J Biol Chem 287(50):42019–42030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Dautzenberg FM, Braun S, Hauger RL (2001) GRK3 mediates desensitization of CRF1 receptors: a potential mechanism regulating stress adaptation. Am J Physiol Regul Integr Comp Physiol 280(4):R935–R946

    CAS  PubMed  Google Scholar 

  219. Fraga S, Jose PA, Soares-da-Silva P (2004) Involvement of G protein-coupled receptor kinase 4 and 6 in rapid desensitization of dopamine D1 receptor in rat IEC-6 intestinal epithelial cells. Am J Physiol Regul Integr Comp Physiol 287(4):R772–R779

    Article  CAS  PubMed  Google Scholar 

  220. Rankin ML, Marinec PS, Cabrera DM, Wang Z, Jose PA, Sibley DR (2006) The D1 dopamine receptor is constitutively phosphorylated by G protein-coupled receptor kinase 4. Mol Pharmacol 69(3):759–769

    CAS  PubMed  Google Scholar 

  221. Kanaide M, Uezono Y, Matsumoto M, Hojo M, Ando Y, Sudo Y, Sumikawa K, Taniyama K (2007) Desensitization of GABA(B) receptor signaling by formation of protein complexes of GABA(B2) subunit with GRK4 or GRK5. J Cell Physiol 210(1):237–245

    Article  CAS  PubMed  Google Scholar 

  222. Iacovelli L, Salvatore L, Capobianco L, Picascia A, Barletta E, Storto M, Mariggio S, Sallese M, Porcellini A, Nicoletti F, De Blasi A (2003) Role of G protein-coupled receptor kinase 4 and beta-arrestin 1 in agonist-stimulated metabotropic glutamate receptor 1 internalization and activation of mitogen-activated protein kinases. J Biol Chem 278(14):12433–12442

    Article  CAS  PubMed  Google Scholar 

  223. Oppermann M, Diverse-Pierluissi M, Drazner MH, Dyer SL, Freedman NJ, Peppel KC, Lefkowitz RJ (1996) Monoclonal antibodies reveal receptor specificity among G-protein-coupled receptor kinases. Proc Natl Acad Sci U S A 93(15):7649–7654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Hu LA, Chen W, Premont RT, Cong M, Lefkowitz RJ (2002) G protein-coupled receptor kinase 5 regulates beta 1-adrenergic receptor association with PSD-95. J Biol Chem 277(2):1607–1613

    Article  CAS  PubMed  Google Scholar 

  225. Appleyard SM, Celver J, Pineda V, Kovoor A, Wayman GA, Chavkin C (1999) Agonist-dependent desensitization of the kappa opioid receptor by G protein receptor kinase and beta-arrestin. J Biol Chem 274(34):23802–23807

    Article  CAS  PubMed  Google Scholar 

  226. Simon V, Robin MT, Legrand C, Cohen-Tannoudji J (2003) Endogenous G protein-coupled receptor kinase 6 triggers homologous beta-adrenergic receptor desensitization in primary uterine smooth muscle cells. Endocrinology 144(7):3058–3066

    Article  CAS  PubMed  Google Scholar 

  227. Aiyar N, Disa J, Dang K, Pronin AN, Benovic JL, Nambi P (2000) Involvement of G protein-coupled receptor kinase-6 in desensitization of CGRP receptors. Eur J Pharmacol 403(1-2):1–7

    Article  CAS  PubMed  Google Scholar 

  228. Fraga S, Luo Y, Jose P, Zandi-Nejad K, Mount DB, Soares-da-Silva P (2006) Dopamine D1-like receptor-mediated inhibition of Cl/HCO3- exchanger activity in rat intestinal epithelial IEC-6 cells is regulated by G protein-coupled receptor kinase 6 (GRK 6). Cell Physiol Biochem 18(6):347–360

    Article  CAS  PubMed  Google Scholar 

  229. Willets JM, Mistry R, Nahorski SR, Challiss RA (2003) Specificity of g protein-coupled receptor kinase 6-mediated phosphorylation and regulation of single-cell m3 muscarinic acetylcholine receptor signaling. Mol Pharmacol 64(5):1059–1068

    Article  CAS  PubMed  Google Scholar 

  230. Willets JM, Brighton PJ, Mistry R, Morris GE, Konje JC, Challiss RA (2009) Regulation of oxytocin receptor responsiveness by G protein-coupled receptor kinase 6 in human myometrial smooth muscle. Mol Endocrinol 23(8):1272–1280

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunhong Xiao M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Xiao, K., Liu, H. (2016). “Barcode” and Differential Effects of GPCR Phosphorylation by Different GRKs. In: Gurevich, V., Gurevich, E., Tesmer, J. (eds) G Protein-Coupled Receptor Kinases. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3798-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3798-1_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3796-7

  • Online ISBN: 978-1-4939-3798-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics