Skip to main content

Visual G Protein-Coupled Receptor Kinases

  • Protocol
  • First Online:
  • 724 Accesses

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Discovered in the 1970s, cloned in the 1990s, and extensively studied both biochemically and genetically over the past four decades, G protein-coupled receptor kinase 1 (GRK1), and a close homolog GRK7, are indispensable for timely phototransduction recovery and dark adaptation of retinal rod and cone photoreceptors. By phosphorylating activated visual pigments, these GRKs enable the binding of visual arrestins to photoexcited pigments to stop phototransduction at the receptor level. Mutations in the GRK1 gene cause a form of stationary night blindness in humans called Oguchi disease, with peculiar physiological and anatomical symptoms. Whereas the importance of these visual GRKs is well established, many questions remain unanswered with regard to expression, posttranslational modifications, substrate specificity, enzymatic actions, intracellular targeting, and regulation by other proteins. This chapter summarizes the current state of knowledge, discusses the relationship between GRK1 and GRK7 in the context of Oguchi disease, and pinpoints fruitful future directions for advancement of the vision research field.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Reiter E, Lefkowitz RJ (2006) GRKs and beta-arrestins: roles in receptor silencing, trafficking and signaling. Trends Endocrinol Metab 17(4):159–165

    Article  CAS  PubMed  Google Scholar 

  2. Pitcher JA, Freedman NJ, Lefkowitz RJ (1998) G protein-coupled receptor kinases. Annu Rev Biochem 67:653–692

    Article  CAS  PubMed  Google Scholar 

  3. Chen CK, Zhang K, Church-Kopish J, Huang W, Zhang H, Chen YJ, Frederick JM, Baehr W (2001) Characterization of human GRK7 as a potential cone opsin kinase. Mol Vis 7:305–313

    CAS  PubMed  Google Scholar 

  4. Lodowski DT, Pitcher JA, Capel WD, Lefkowitz RJ, Tesmer JJ (2003) Keeping G proteins at bay: a complex between G protein-coupled receptor kinase 2 and Gbetagamma. Science 300:1256–1262

    Article  CAS  PubMed  Google Scholar 

  5. Carman CV, Parent JL, Day PW, Pronin AN, Sternweis PM, Wedegaertner PB, Gilman AG, Benovic JL, Kozasa T (1999) Selective regulation of Galpha(q/11) by an RGS domain in the G protein-coupled receptor kinase, GRK2. J Biol Chem 274:34483–34492

    Article  CAS  PubMed  Google Scholar 

  6. Ribas C, Penela P, Murga C, Salcedo A, García-Hoz C, Jurado-Pueyo M, Aymerich I, Mayor FJ (2007) The G protein-coupled receptor kinase (GRK) interactome: role of GRKs in GPCR regulation and signaling. Biochim Biophys Acta 1768:913–922

    Article  CAS  PubMed  Google Scholar 

  7. Soundararajan M, Willard FS, Kimple AJ, Turnbull AP, Ball LJ, Schoch GA, Gileadi C, DE Fedorov OY, Higman VA, Hutsell SQ, Sundström M, Doyle DA, Siderovski DP (2008) Structural diversity in the RGS domain and its interaction with heterotrimeric G protein alpha-subunits. Proc Natl Acad Sci U S A 105(17):6457–6462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Willets JM, Challiss RA, Nahorski SR (2003) Non-visual GRKs: are we seeing the whole picture? Trends Pharmacol Sci 24:626–633

    Article  CAS  PubMed  Google Scholar 

  9. Pitcher JA, Touhara K, Payne ES, Lefkowitz RJ (1995) Pleckstrin homology domain-mediated membrane association and activation of the beta-adrenergic receptor kinase requires coordinate interaction with G beta gamma subunits and lipid. J Biol Chem 270:11707–11710

    Article  CAS  PubMed  Google Scholar 

  10. Inglese J, Glickman JF, Lorenz W, Caron MG, Lefkowitz RJ (1992) Isoprenylation of a protein kinase. Requirement of farnesylation/alpha-carboxyl methylation for full enzymatic activity of rhodopsin kinase. J Biol Chem 267(3):1422–1425

    CAS  PubMed  Google Scholar 

  11. Frank RN, Cavanagh HD, Kenyon KR (1973) Light-stimulated phosphorylation of bovine visual pigments by adenosine triphosphate. J Biol Chem 248(2):596–609

    CAS  PubMed  Google Scholar 

  12. Kühn H, Dreyer WJ (1972) Light dependent phosphorylation of rhodopsin by ATP. FEBS Lett 20:1–6

    Article  PubMed  Google Scholar 

  13. Maeda T, Imanishi Y, Palczewski K (2003) Rhodopsin phosphorylation: 30 years later. Prog Retin Eye Res 22(4):417–434

    Article  CAS  PubMed  Google Scholar 

  14. Lorenz W, Inglese J, Palczewski K, Onorato JJ, Caron MG, Lefkowitz RJ (1991) The receptor kinase family: primary structure of rhodopsin kinase reveals similarities to the beta-adrenergic receptor kinase. Proc Natl Acad Sci U S A 88:8715–8719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Benovic JL, Strasser RH, Caron MG, Lefkowitz RJ (1986) Beta-adrenergic receptor kinase: identification of a novel protein kinase that phosphorylates the agonist-occupied form of the receptor. Proc Natl Acad Sci U S A 83:2797–2801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen CK, Burns ME, Spencer M, Niemi GA, Chen J, Hurley JB, Baylor DA, Simon MI (1999) Abnormal photoresponses and light-induced apoptosis in rods lacking rhodopsin kinase. Proc Nat Acad Sci U S A 96:3718–3722

    Article  CAS  Google Scholar 

  17. Khani SC, Abitbol M, Yamamoto S, Maravic-Magovcevic I, Dryja TP (1996) Characterization and chromosomal localization of the gene for human rhodopsin kinase. Genomics 35(3):571–576

    Article  CAS  PubMed  Google Scholar 

  18. Lyubarsky AL, Chen C-K, Simon MI, Pugh EN (2000) Mice lacking G-protein receptor kinase 1 have profoundly slowed recovery of cone-driven retinal responses. J Neurosci 20:2209–2217

    CAS  PubMed  Google Scholar 

  19. Yamamoto S, Sippel KC, Berson EL, Dryja TP (1997) Defects in the rhodopsin kinase gene in the Oguchi form of stationary night blindness. Nat Genet 15:175–178

    Article  CAS  PubMed  Google Scholar 

  20. Hisatomi O, Matsuda S, Satoh T, Kotaka S, Imanishi Y, Tokunaga F (1998) A novel subtype of G-protein-coupled receptor kinase, GRK7, in teleost cone photoreceptors. FEBS Lett 424:159–164

    Article  CAS  PubMed  Google Scholar 

  21. Weiss ER, Raman D, Shirakawa S, Ducceschi MH, Bertram PT, Wong F, Kraft TW, Osawa S (1998) The cloning of GRK7, a candidate cone opsin kinase, from cone- and rod-dominant mammalian retinas. Mol Vis 4:27

    CAS  PubMed  Google Scholar 

  22. Weiss ER, Ducceschi MH, Horner TJ, Li A, Craft CM, Osawa S (2001) Species-specific differences in expression of G-protein-coupled receptor kinase (GRK) 7 and GRK1 in mammalian cone photoreceptor cells: implications for cone cell phototransduction. J Neurosci 21:9175–9184

    CAS  PubMed  Google Scholar 

  23. Tachibanaki S, Arinobu D, Shimauchi-Matsukawa Y, Tsushima S, Kawamura S (2005) Highly effective phosphorylation by G protein-coupled receptor kinase 7 of light-activated visual pigment in cones. Proc Natl Acad Sci U S A 102:9329–9334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wada Y, Sugiyama J, Okano T, Fukada Y (2006) GRK1 and GRK7: unique cellular distribution and widely different activities of opsin phosphorylation in the zebrafish rods and cones. J Neurochem 98:824–837

    Article  CAS  PubMed  Google Scholar 

  25. Zhao X, Huang J, Khani SC, Palczewski K (1998) Molecular forms of human rhodopsin kinase (GRK1). J Biol Chem 273(9):5124–5131

    Article  CAS  PubMed  Google Scholar 

  26. Chen CK (2005) The vertebrate phototransduction cascade: amplification and termination mechanisms. Rev Physiol Biochem Pharmacol 154:101–121

    Article  CAS  PubMed  Google Scholar 

  27. Stryer L (1986) Cyclic GMP cascade of vision. Annu Rev Neurosci 9(87-119)

    Google Scholar 

  28. Leskov IB, Klenchin VA, Handy JW, Whitlock GG, Govardovskii VI, Bownds MD, Lamb TD, Pugh ENJ, Arshavsky VY (2000) The gain of rod phototransduction: reconciliation of biochemical and electrophysiological measurements. Neuron 27(3):525–537

    Article  CAS  PubMed  Google Scholar 

  29. Lamb TD, Pugh ENJ (1992) A quantitative account of the activation steps involved in phototransduction in amphibian photoreceptors. J Physiol 449:719–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xu J, Dodd RL, Makino CL, Simon MI, Baylor DA, Chen J (1997) Prolonged photoresponses in transgenic mouse rods lacking arrestin. Nature 389:505–509

    Article  CAS  PubMed  Google Scholar 

  31. Chen J, Makino CL, Peachey NS, Baylor DA, Simon MI (1995) Mechanisms of rhodopsin inactivation in vivo as revealed by a COOH-terminal truncation mutant. Science 267(5196):374–377

    Article  CAS  PubMed  Google Scholar 

  32. Mendez A, Burns ME, Roca A, Lem J, Wu LW, Simon MI, Baylor DA, Chen J (2000) Rapid and reproducible deactivation of rhodopsin requires multiple phosphorylation sites. Neuron 28(1):153–164

    Article  CAS  PubMed  Google Scholar 

  33. Rinner O, Makhankov YV, Biehlmaier O, Neuhauss SC (2005) Knockdown of cone-specific kinase GRK7 in larval zebrafish leads to impaired cone response recovery and delayed dark adaptation. Neuron 47:231–242

    Article  CAS  PubMed  Google Scholar 

  34. Liu P, Osawa S, Weiss ER (2005) M opsin phosphorylation in intact mammalian retinas. J Neurochem 93:135–144

    Article  CAS  PubMed  Google Scholar 

  35. Horner TJ, Osawa S, Schaller MD, Weiss ER (2005) Phosphorylation of GRK1 and GRK7 by cAMP-dependent protein kinase attenuates their enzymatic activities. J Biol Chem 280:28241–28250

    Article  CAS  PubMed  Google Scholar 

  36. Vogalis F, Shiraki T, Kojima D, Wada Y, Nishiwaki Y, Jarvinen JL, Sugiyama J, Kawakami K, Masai I, Kawamura S, Fukada Y, Lamb TD (2011) Ectopic expression of cone-specific G-protein-coupled receptor kinase GRK7 in zebrafish rods leads to lower photosensitivity and altered responses. J Physiol 589(Pt 9):2321–2348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Krispel CM, Chen D, Melling N, Chen YJ, Martemyanov KA, Quillinan N, Arshavsky VY, Wensel TG, Chen CK, Burns ME (2006) RGS expression rate-limits recovery of rod photoresponses. Neuron 51(4):409–416

    Article  CAS  PubMed  Google Scholar 

  38. Matthews HR, Sampath AP (2010) Photopigment quenching is Ca2+ dependent and controls response duration in salamander L-cone photoreceptors. J Gen Physiol 135(4):355–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen CK, Woodruff ML, Chen FS, Chen Y, Cilluffo MC, Tranchina D, Fain GL (2012) Modulation of mouse rod response decay by rhodopsin kinase and recoverin. J Neurosci 32(45):15998–16006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Brown NG, Fowles C, Sharma R, Akhtar M (1992) Mechanistic studies on rhodopsin kinase. Light-dependent phosphorylation of C-terminal peptides of rhodopsin. Eur J Biochem 208(3):659–667

    Article  CAS  PubMed  Google Scholar 

  41. McCarthy NE, Akhtar M (2002) Activation of rhodopsin kinase. Biochem J 363(Pt 2):359–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Palczewski K, Buczylko J, Kaplan MW, Polans AS, Crabb JW (1991) Mechanism of rhodopsin kinase activation. J Biol Chem 266:12949–12955

    CAS  PubMed  Google Scholar 

  43. Shi GW, Chen J, Concepcion F, Motamedchaboki K, Marjoram P, Langen R, Chen J (2005) Light causes phosphorylation of nonactivated visual pigments in intact mouse rod photoreceptor cells. J Biol Chem 280:41184–41191

    Article  CAS  PubMed  Google Scholar 

  44. Ohguro H, Palczewski K, Ericsson LH, Walsh KA, Johnson RS (1993) Sequential phosphorylation of rhodopsin at multiple sites. Biochemistry 32(21):5718–5724

    Article  CAS  PubMed  Google Scholar 

  45. Papac DI, Oatis JEJ, Crouch RK, Knapp DR (1993) Mass spectrometric identification of phosphorylation sites in bleached bovine rhodopsin.Biochemistry 32(23):5930–5934

    Article  CAS  PubMed  Google Scholar 

  46. Ohguro H, Van Hooser JP, Milam AH, Palczewski K (1995) Rhodopsin phosphorylation and dephosphorylation in vivo. J Biol Chem 270(24):14259–14262

    Article  CAS  PubMed  Google Scholar 

  47. Kennedy MJ, Lee KA, Niemi GA, Craven KB, Garwin GG, Saari JC, Hurley JB (2001) Multiple phosphorylation of rhodopsin and the in vivo chemistry underlying rod photoreceptor dark adaptation. Neuron 31(1):87–101

    Article  CAS  PubMed  Google Scholar 

  48. Kennedy MJ, Dunn FA, Hurley JB (2004) Visual pigment phosphorylation but not transducin translocation can contribute to light adaptation in zebrafish cones. Neuron 41(6):915–928

    Article  CAS  PubMed  Google Scholar 

  49. Zhang H, Li S, Doan T, Rieke F, Detwiler PB, Frederick JM, Baehr W (2007) Deletion of PrBP/delta impedes transport of GRK1 and PDE6 catalytic subunits to photoreceptor outer segments. Proc Natl Acad Sci U S A 104(21):8857–8862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang H, Liu XH, Zhang K, Chen CK, Frederick JM, Prestwich GD, Baehr W (2004) Photoreceptor cGMP phosphodiesterase delta subunit (PDEdelta) functions as a prenyl-binding protein. J Biol Chem 279(1):407–413

    Article  CAS  PubMed  Google Scholar 

  51. Chen C-K, Inglese J, Lefkowitz RJ, Hurley JB (1995) Ca2+-dependent interaction of recoverin with rhodopsin kinase. J Biol Chem 270:18060–18066

    Article  CAS  PubMed  Google Scholar 

  52. Kawamura S (1993) Rhodopsin phosphorylation as a mechanism of cyclic GMP phosphodiesterase regulation by S-modulin. Nature 362(6423):855–857

    Article  CAS  PubMed  Google Scholar 

  53. Kawamura S, Takamatsu K, Kitamura K (1992) Purification and characterization of S-modulin, a calcium-dependent regulator on cGMP phosphodiesterase in frog rod photoreceptors. Biochem Biophys Res Commun 186(1):411–417

    Article  CAS  PubMed  Google Scholar 

  54. Klenchin VA, Calvert PD, Bownds MD (1995) Inhibition of rhodopsin kinase by recoverin. Further evidence for a negative feedback system in phototransduction. J Biol Chem 270:16147–16152

    Article  CAS  PubMed  Google Scholar 

  55. Iacovelli L, Sallese M, Mariggiò S, de Blasi A (1999) Regulation of G-protein-coupled receptor kinase subtypes by calcium sensor proteins. FASEB J 13(1):1–8

    CAS  PubMed  Google Scholar 

  56. Senin I, Koch KW, Philippov PP (2002) Ca2+-dependent control of rhodopsin phosphorylation: recoverin and rhodopsin kinase. Adv Exp Med Biol 514:69–99

    Article  CAS  PubMed  Google Scholar 

  57. Ames JB, Levay K, Wingard JN, Lusin JD, Slepak VZ (2006) Structural basis for calcium-induced inhibition of rhodopsin kinase by recoverin. J Biol Chem 281(48):37234–37245

    Article  Google Scholar 

  58. Arinobu D, Tachibanaki S, Kawamura S (2010) Larger inhibition of visual pigment kinase in cones than in rods. J Neurochem 115(1):259–268

    Article  CAS  PubMed  Google Scholar 

  59. Chen CK, Woodruff ML, Fain GL (2015) Rhodopsin kinase and recoverin modulate phosphodiesterase during mouse photoreceptor light adaptation. J Gen Physiol 145(3):213–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen CK, Woodruff ML, Chen FS, Chen D, Fain GL (2010) Background light produces a recoverin-dependent modulation of activated-rhodopsin lifetime in mouse rods. J Neurosci 30:1213–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Makino ER, Handy JW, Li T, Arshavsky VY (1999) The GTPase activating factor for transducin in rod photoreceptors is the complex between RGS9 and type 5G protein beta subunit. Proc Natl Acad Sci U S A 96(5):1947–1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Torisawa A, Arinobu D, Tachibanaki S, Kawamura S (2008) Amino acid residues in GRK1/GRK7 responsible for interaction with S-modulin/recoverin. Photochem Photobiol 84(4):823–830

    Article  CAS  PubMed  Google Scholar 

  63. Palczewski K, Buczyłko J, Van Hooser P, Carr SA, Huddleston MJ, Crabb JW (1992) Identification of the autophosphorylation sites in rhodopsin kinase. J Biol Chem 267(26):18991–18998

    CAS  PubMed  Google Scholar 

  64. Singh P, Wang B, Maeda T, Palczewski K, Tesmer JJ (2008) Structures of rhodopsin kinase in different ligand states reveal key elements involved in G protein-coupled receptor kinase activation. J Biol Chem 283:14053–14062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lane KT, Beese LS (2006) Thematic review series: lipid posttranslational modifications. Structural biology of protein farnesyltransferase and geranylgeranyltransferase type I. J Lipid Res 47(4):681–699

    Article  CAS  PubMed  Google Scholar 

  66. Bruel C, Cha K, Reeves PJ, Getmanova E, Khorana HG (2000) Rhodopsin kinase: expression in mammalian cells and a two-step purification. Proc Natl Acad Sci U S A 97(7):3004–3009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kutuzov MA, Andreeva AV, Bennett N (2012) Regulation of the methylation status of G protein-coupled receptor kinase 1 (rhodopsin kinase). Cell Signal 24(12):2259–2267

    Article  CAS  PubMed  Google Scholar 

  68. Tesmer JJ, Nance MR, Singh P, Lee H (2012) Structure of a monomeric variant of rhodopsin kinase at 2.5 A resolution. Acta Crystallogr Sect F Struct Biol Cryst Commun 68(Pt 6):622–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Huang CC, Orban T, Jastrzebska B, Palczewski K, Tesmer JJ (2011) Activation of G protein-coupled receptor kinase 1 involves interactions between its N-terminal region and its kinase domain. Biochemistry 50:1940–1949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Homan KT, Wu E, Wilson MW, Singh P, Larsen SD, Tesmer JJG (2014) Structural and functional analysis of G protein-coupled receptor kinase inhibition by paroxetine and a rationally designed analog. Mol Pharmacol 85(2):237–248

    Article  PubMed  PubMed Central  Google Scholar 

  71. Sonoyama H, Shinoda K, Ishigami C, Tada Y, Ideta H, Ideta R, Takahashi M, Miyake Y (2011) Oguchi disease masked by retinitis pigmentosa. Doc Ophthalmol 123(2):127–133

    Article  PubMed  Google Scholar 

  72. Fuchs S, Nakazawa M, Maw M, Tamai M, Oguchi Y, Gal A (1995) A homozygous 1-base pair deletion in the arrestin gene is a frequent cause of Oguchi disease in Japanese. Nat Genet 10(3):360–362

    Article  CAS  PubMed  Google Scholar 

  73. Cideciyan AV, Zhao X, Nielsen L, Khani SC, Jacobson SG, Palczewski K (1998) Null mutation in the rhodopsin kinase gene slows recovery kinetics of rod and cone phototransduction in man. Proc Natl Acad Sci U S A 95(1):328–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Azam M, Collin RW, Khan MI, Shah ST, Qureshi N, Ajmal M, den Hollander AI, Qamar R, Cremers FP (2009) A novel mutation in GRK1 causes Oguchi disease in a consanguineous Pakistani family. Mol Vis 15:1788–1793

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Hayashi T, Gekka T, Takeuchi T, Goto-Omoto S, Kitahara K (2007) A novel homozygous GRK1 mutation (P391H) in 2 siblings with Oguchi disease with markedly reduced cone responses. Ophthalmology 114:134–141

    Article  PubMed  Google Scholar 

  76. Huang L, Li W, Tang W, Zhu X, Ou-Yang P, Lu G (2012) A Chinese family with Oguchi’s disease due to compound heterozygosity including a novel deletion in the arrestin gene. Mol Vis 18:528–536

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Oishi A, Akimoto M, Kawagoe N, Mandai M, Takahashi M, Yoshimura N (2007) Novel mutations in the GRK1 gene in Japanese patients with Oguchi disease. Am J Ophthalmol 144:475–477

    Article  CAS  PubMed  Google Scholar 

  78. Skorczyk-Werner AJ, Kociecki J, Wawrocka A, Wicher K, Krawczyński MR (2015) The first case of Oguchi disease, type 2 in a Polish patient with confirmed GRK1 gene mutation. Klin Oczna 117(1):27–30

    PubMed  Google Scholar 

  79. Zhang Q, Zulfiqar F, Riazuddin SA, Xiao X, Yasmeen A, Rogan PK, Caruso R, Sieving PA, Riazuddin S, Hejtmancik JF (2005) A variant form of Oguchi disease mapped to 13q34 associated with partial deletion of GRK1 gene. Mol Vis 11:977–985

    CAS  PubMed  Google Scholar 

  80. Nakamura M, Miyake Y (2004) Molecular genetic study of congenital stationary night blindness. Nippon Ganka Gakkai Zasshi 108(11):665–673

    CAS  PubMed  Google Scholar 

  81. Waheed NK, Qavi AH, Malik SN, Maria M, Riaz M, Cremers FP, Azam M, Qamar R (2012) A nonsense mutation in S-antigen (p.Glu306*) causes Oguchi disease. Mol Vis 18:1253–1259

    CAS  PubMed  Google Scholar 

  82. Gurevich EV, Tesmer JJ, Mushegian A, Gurevich VV (2012) G protein-coupled receptor kinases: more than just kinases and not only for GPCRs. Pharmacol Ther 133:40–69

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Ching-Kang Jason Chen is the Alice McPherson Retina Research Foundation Endowed Chair at the Baylor College of Medicine. The Department of Ophthalmology receives an unrestricted grant from Research to Prevent Blindness, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Kang Jason Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hsu, CC., Chen, CK.J. (2016). Visual G Protein-Coupled Receptor Kinases. In: Gurevich, V., Gurevich, E., Tesmer, J. (eds) G Protein-Coupled Receptor Kinases. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3798-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3798-1_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3796-7

  • Online ISBN: 978-1-4939-3798-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics