Skip to main content

GRK Roles in C. elegans

  • Protocol
  • First Online:
G Protein-Coupled Receptor Kinases

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

G-protein-coupled receptor kinases (GRKs) are serine/threonine kinases that specifically phosphorylate activated (agonist bound) GPCRs to terminate signaling. Proteins of the arrestin family then bind to the phosphorylated receptor, blocking both receptor and G-protein reactivation. Thus, GRKs are critical regulators of GPCR signaling that function to protect cells against receptor overstimulation, maintain sensitivity to changing environmental signals and allow signal integration. When considering the extent to which C. elegans rely upon GPCR-mediated chemosensation to navigate their native environments, the involvement of GRKs in the regulation of C. elegans chemosensation is logical. While C. elegans grk-1 plays a minor modulatory role in dopamine signaling, C. elegans grk-2 is involved in numerous aspects of chemosensation, from regulation of specialized sensory structures to circadian control over chemosensory sensitivity. In this chapter, we discuss the functions of both in detail and, to avoid confusion with the mammalian gene names, we refer to the C. elegans genes as Ce-grk-1 and Ce-grk-2, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77(1):71–94

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Hoffenberg R (2003) Brenner, the worm and the prize. Clin Med 3(3):285–286

    Article  Google Scholar 

  3. Consortium CeS (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282(5396):2012–2018

    Article  Google Scholar 

  4. Sulston JE, Horvitz HR (1977) Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol 56(1):110–156

    Article  CAS  PubMed  Google Scholar 

  5. Kimble J, Hirsh D (1979) The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. Dev Biol 70(2):396–417

    Article  CAS  PubMed  Google Scholar 

  6. Ward S, Thomson N, White JG, Brenner S (1975) Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans. J Comp Neurol 160(3):313–337

    Article  CAS  PubMed  Google Scholar 

  7. White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 314(1165):1–340

    Article  CAS  PubMed  Google Scholar 

  8. Prasad BC, Reed RR (1999) Chemosensation: molecular mechanisms in worms and mammals. Trends Genet 15(4):150–153

    Article  CAS  PubMed  Google Scholar 

  9. Troemel ER (1999) Chemosensory signaling in C. elegans. Bioessays 21(12):1011–1020

    Article  CAS  PubMed  Google Scholar 

  10. Bargmann CI (2006, October 25) Chemosensation in C. elegans. In: WormBook (ed) The C. elegans Research Community, WormBook. doi:10.1895/wormbook.1.123.1. http://www.wormbook.org

  11. Bastiani C, Mendel J (2006, October 13) Heterotrimeric G proteins in C. elegans. In: WormBook, (ed) The C. elegans Research Community, WormBook. doi:10.1895/wormbook.1.75.1. http://www.wormbook.org

  12. Robertson HM, Thomas JH (2006, January 06) The putative chemoreceptor families of C. elegans. In: WormBook (ed) The C. elegans Research Community, WormBook. doi:10.1895/wormbook.1.66.1, http://www.wormbook.org

  13. Bargmann CI (2006) Comparative chemosensation from receptors to ecology. Nature 444(7117):295–301

    Article  CAS  PubMed  Google Scholar 

  14. Hobson RJ, Hapiak VM, Xiao H, Buehrer KL, Komuniecki PR, Komuniecki RW (2006) SER-7, a Caenorhabditis elegans 5-HT7-like receptor, is essential for the 5-HT stimulation of pharyngeal pumping and egg laying. Genetics 172(1):159–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sun J, Singh V, Kajino-Sakamoto R, Aballay A (2011) Neuronal GPCR controls innate immunity by regulating noncanonical unfolded protein response genes. Science 332(6030):729–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zwaal RR, Mendel JE, Sternberg PW, Plasterk RH (1997) Two neuronal G proteins are involved in chemosensation of the Caenorhabditis elegans Dauer-inducing pheromone. Genetics 145(3):715–727

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Roayaie K, Crump JG, Sagasti A, Bargmann CI (1998) The Gα protein ODR-3 mediates olfactory and nociceptive function and controls cilium morphogenesis in C. elegans olfactory neurons. Neuron 20(1):55–67

    Article  CAS  PubMed  Google Scholar 

  18. Lans H, Rademakers S, Jansen G (2004) A network of stimulatory and inhibitory Gα-subunits regulates olfaction in Caenorhabditis elegans. Genetics 167(4):1677–1687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jansen G, Thijssen KL, Werner P, van der Horst M, Hazendonk E, Plasterk RH (1999) The complete family of genes encoding G proteins of Caenorhabditis elegans. Nat Genet 21(4):414–419

    Article  CAS  PubMed  Google Scholar 

  20. Cuppen E, van der Linden AM, Jansen G, Plasterk RH (2003) Proteins interacting with Caenorhabditis elegans Gα subunits. Comp Funct Genom 4(5):479–491

    Article  CAS  Google Scholar 

  21. van der Voorn L, Gebbink M, Plasterk RH, Ploegh HL (1990) Characterization of a G-protein β-subunit gene from the nematode Caenorhabditis elegans. J Mol Biol 213(1):17–26

    Article  PubMed  Google Scholar 

  22. Zwaal RR, Ahringer J, van Luenen HG, Rushforth A, Anderson P, Plasterk RH (1996) G proteins are required for spatial orientation of early cell cleavages in C. elegans embryos. Cell 86(4):619–629

    Article  CAS  PubMed  Google Scholar 

  23. Chase DL, Patikoglou GA, Koelle MR (2001) Two RGS proteins that inhibit Gαo and Gαq signaling in C. elegans neurons require a Gβ5-like subunit for function. Curr Biol 11(4):222–231

    Article  CAS  PubMed  Google Scholar 

  24. Robatzek M, Niacaris T, Steger K, Avery L, Thomas JH (2001) eat-11 encodes GPB-2, a Gβ5 ortholog that interacts with Goα and Gqα to regulate C. elegans behavior. Curr Biol 11(4):288–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. van der Linden AM, Simmer F, Cuppen E, Plasterk RH (2001) The G-protein β-subunit GPB-2 in Caenorhabditis elegans regulates the Goα-Gqα signaling network through interactions with the regulator of G-protein signaling proteins EGL-10 and EAT-16. Genetics 158(1):221–235

    PubMed  PubMed Central  Google Scholar 

  26. Jansen G, Weinkove D, Plasterk RH (2002) The G-protein γ subunit gpc-1 of the nematode C. elegans is involved in taste adaptation. EMBO J 21(5):986–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yamada K, Hirotsu T, Matsuki M, Kunitomo H, Iino Y (2009) GPC-1, a G protein γ-subunit, regulates olfactory adaptation in Caenorhabditis elegans. Genetics 181(4):1347–1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gotta M, Ahringer J (2001) Distinct roles for Gα and Gβγ in regulating spindle position and orientation in Caenorhabditis elegans embryos. Nat Cell Biol 3(3):297–300

    Article  CAS  PubMed  Google Scholar 

  29. Fukuto HS, Ferkey DM, Apicella AJ, Lans H, Sharmeen T, Chen W, Lefkowitz RJ, Jansen G, Schafer WR, Hart AC (2004) G protein-coupled receptor kinase function is essential for chemosensation in C. elegans. Neuron 42(4):581–593

    Article  CAS  PubMed  Google Scholar 

  30. Dong MQ, Chase D, Patikoglou GA, Koelle MR (2000) Multiple RGS proteins alter neural G protein signaling to allow C. elegans to rapidly change behavior when fed. Genes Dev 14(16):2003–2014

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Palmitessa A, Hess HA, Bany IA, Kim YM, Koelle MR, Benovic JL (2005) Caenorhabditus elegans arrestin regulates neural G protein signaling and olfactory adaptation and recovery. J Biol Chem 280(26):24649–24662

    Article  CAS  PubMed  Google Scholar 

  32. Ahola TM, Manninen T, Alkio N, Ylikomi T (2002) G protein-coupled receptor 30 is critical for a progestin-induced growth inhibition in MCF-7 breast cancer cells. Endocrinology 143(9):3376–3384

    Article  CAS  PubMed  Google Scholar 

  33. Bargmann CI (1998) Neurobiology of the Caenorhabditis elegans genome. Science 282(5396):2028–2033

    Article  CAS  PubMed  Google Scholar 

  34. Hess HA, Roper JC, Grill SW, Koelle MR (2004) RGS-7 completes a receptor-independent heterotrimeric G protein cycle to asymmetrically regulate mitotic spindle positioning in C. elegans. Cell 119(2):209–218

    Article  CAS  PubMed  Google Scholar 

  35. Sengupta P, Chou JH, Bargmann CI (1996) odr-10 encodes a seven transmembrane domain olfactory receptor required for responses to the odorant diacetyl. Cell 84(6):899–909

    Article  CAS  PubMed  Google Scholar 

  36. Mukhopadhyay S, Lu Y, Shaham S, Sengupta P (2008) Sensory signaling-dependent remodeling of olfactory cilia architecture in C. elegans. Dev Cell 14(5):762–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Troemel ER, Chou JH, Dwyer ND, Colbert HA, Bargmann CI (1995) Divergent seven transmembrane receptors are candidate chemosensory receptors in C. elegans. Cell 83(2):207–218

    Article  CAS  PubMed  Google Scholar 

  38. Bargmann CI, Hartwieg E, Horvitz HR (1993) Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 74(3):515–527

    Article  CAS  PubMed  Google Scholar 

  39. Kaplan JM, Horvitz HR (1993) A dual mechanosensory and chemosensory neuron in Caenorhabditis elegans. Proc Natl Acad Sci U S A 90(6):2227–2231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bargmann CI, Thomas JH, Horvitz HR (1990) Chemosensory cell function in the behavior and development of Caenorhabditis elegans. Cold Spring Harb Symp Quant Biol 55:529–538

    Article  CAS  PubMed  Google Scholar 

  41. Hilliard MA, Bergamasco C, Arbucci S, Plasterk RH, Bazzicalupo P (2004) Worms taste bitter: ASH neurons, QUI-1, GPA-3 and ODR-3 mediate quinine avoidance in Caenorhabditis elegans. EMBO J 23(5):1101–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hilliard MA, Bargmann CI, Bazzicalupo P (2002) C. elegans responds to chemical repellents by integrating sensory inputs from the head and the tail. Curr Biol 12(9):730–734

    Article  CAS  PubMed  Google Scholar 

  43. Hilliard MA, Apicella AJ, Kerr R, Suzuki H, Bazzicalupo P, Schafer WR (2005) In vivo imaging of C. elegans ASH neurons: cellular response and adaptation to chemical repellents. EMBO J 24(1):63–72

    Article  CAS  PubMed  Google Scholar 

  44. Sambongi Y, Nagae T, Liu Y, Yoshimizu T, Takeda K, Wada Y, Futai M (1999) Sensing of cadmium and copper ions by externally exposed ADL, ASE, and ASH neurons elicits avoidance response in Caenorhabditis elegans. Neuroreport 10(4):753–757

    Article  CAS  PubMed  Google Scholar 

  45. Hart AC, Kass J, Shapiro JE, Kaplan JM (1999) Distinct signaling pathways mediate touch and osmosensory responses in a polymodal sensory neuron. J Neurosci 19(6):1952–1958

    CAS  PubMed  Google Scholar 

  46. Chatzigeorgiou M, Bang S, Hwang SW, Schafer WR (2013) tmc-1 encodes a sodium-sensitive channel required for salt chemosensation in C. elegans. Nature 494(7435):95–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. L'Etoile ND, Bargmann CI (2000) Olfaction and odor discrimination are mediated by the C. elegans guanylyl cyclase ODR-1. Neuron 25(3):575–586

    Article  PubMed  Google Scholar 

  48. Komatsu H, Mori I, Rhee JS, Akaike N, Ohshima Y (1996) Mutations in a cyclic nucleotide-gated channel lead to abnormal thermosensation and chemosensation in C. elegans. Neuron 17(4):707–718

    Article  CAS  PubMed  Google Scholar 

  49. Coburn CM, Bargmann CI (1996) A putative cyclic nucleotide-gated channel is required for sensory development and function in C. elegans. Neuron 17(4):695–706

    Article  CAS  PubMed  Google Scholar 

  50. Kahn-Kirby AH, Dantzker JL, Apicella AJ, Schafer WR, Browse J, Bargmann CI, Watts JL (2004) Specific polyunsaturated fatty acids drive TRPV-dependent sensory signaling in vivo. Cell 119(6):889–900

    Article  CAS  PubMed  Google Scholar 

  51. Colbert HA, Smith TL, Bargmann CI (1997) OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans. J Neurosci 17(21):8259–8269

    CAS  PubMed  Google Scholar 

  52. Tobin D, Madsen D, Kahn-Kirby A, Peckol E, Moulder G, Barstead R, Maricq A, Bargmann C (2002) Combinatorial expression of TRPV channel proteins defines their sensory functions and subcellular localization in C. elegans neurons. Neuron 35(2):307–318

    Article  CAS  PubMed  Google Scholar 

  53. Wani KA, Catanese M, Normantowicz R, Herd M, Maher KN, Chase DL (2012) D1 dopamine receptor signaling is modulated by the R7 RGS protein EAT-16 and the R7 binding protein RSBP-1 in Caenoerhabditis elegans motor neurons. PLoS One 7(5):e37831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. McDonald PW, Hardie SL, Jessen TN, Carvelli L, Matthies DS, Blakely RD (2007) Vigorous motor activity in Caenorhabditis elegans requires efficient clearance of dopamine mediated by synaptic localization of the dopamine transporter DAT-1. J Neurosci 27(51):14216–14227

    Article  CAS  PubMed  Google Scholar 

  55. Chase DL, Pepper JS, Koelle MR (2004) Mechanism of extrasynaptic dopamine signaling in Caenorhabditis elegans. Nat Neurosci 7(10):1096–1103

    Article  CAS  PubMed  Google Scholar 

  56. Allen AT, Maher KN, Wani KA, Betts KE, Chase DL (2011) Coexpressed D1- and D2-like dopamine receptors antagonistically modulate acetylcholine release in Caenorhabditis elegans. Genetics 188(3):579–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jaber M, Koch WJ, Rockman H, Smith B, Bond RA, Sulik KK, Ross J Jr, Lefkowitz RJ, Caron MG, Giros B (1996) Essential role of β-adrenergic receptor kinase 1 in cardiac development and function. Proc Natl Acad Sci U S A 93(23):12974–12979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rockman HA, Choi DJ, Akhter SA, Jaber M, Giros B, Lefkowitz RJ, Caron MG, Koch WJ (1998) Control of myocardial contractile function by the level of β-adrenergic receptor kinase 1 in gene-targeted mice. J Biol Chem 273(29):18180–18184

    Article  CAS  PubMed  Google Scholar 

  59. Gainetdinov RR, Bohn LM, Sotnikova TD, Cyr M, Laakso A, Macrae AD, Torres GE, Kim KM, Lefkowitz RJ, Caron MG, Premont RT (2003) Dopaminergic supersensitivity in G protein-coupled receptor kinase 6-deficient mice. Neuron 38(2):291–303

    Article  CAS  PubMed  Google Scholar 

  60. Gainetdinov RR, Bohn LM, Walker JK, Laporte SA, Macrae AD, Caron MG, Lefkowitz RJ, Premont RT (1999) Muscarinic supersensitivity and impaired receptor desensitization in G protein-coupled receptor kinase 5-deficient mice. Neuron 24(4):1029–1036

    Article  CAS  PubMed  Google Scholar 

  61. Premont RT, Gainetdinov RR (2007) Physiological roles of G protein-coupled receptor kinases and arrestins. Annu Rev Physiol 69:511–534

    Article  CAS  PubMed  Google Scholar 

  62. Fong AM, Premont RT, Richardson RM, Yu YR, Lefkowitz RJ, Patel DD (2002) Defective lymphocyte chemotaxis in β-arrestin2- and GRK6-deficient mice. Proc Natl Acad Sci U S A 99(11):7478–7483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Schleicher S, Boekhoff I, Arriza J, Lefkowitz RJ, Breer H (1993) A β-adrenergic receptor kinase-like enzyme is involved in olfactory signal termination. Proc Natl Acad Sci U S A 90(4):1420–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Boekhoff I, Inglese J, Schleicher S, Koch WJ, Lefkowitz RJ, Breer H (1994) Olfactory desensitization requires membrane targeting of receptor kinase mediated by βγ subunits of heterotrimeric G proteins. J Biol Chem 269(1):37–40

    CAS  PubMed  Google Scholar 

  65. Peppel K, Boekhoff I, McDonald P, Breer H, Caron MG, Lefkowitz RJ (1997) G protein-coupled receptor kinase 3 (GRK3) gene disruption leads to loss of odorant receptor desensitization. J Biol Chem 272(41):25425–25428

    Article  CAS  PubMed  Google Scholar 

  66. Ezak MJ, Hong E, Chaparro-Garcia A, Ferkey DM (2010) Caenorhabditis elegans TRPV channels function in a modality-specific pathway to regulate response to aberrant sensory signaling. Genetics 185(1):233–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang S, Sokolchik I, Blanco G, Sze JY (2004) Caenorhabditis elegans TRPV ion channel regulates 5HT biosynthesis in chemosensory neurons. Development 131(7):1629–1638

    Article  CAS  PubMed  Google Scholar 

  68. Sokolchik I, Tanabe T, Baldi PF, Sze JY (2005) Polymodal sensory function of the Caenorhabditis elegans OCR-2 channel arises from distinct intrinsic determinants within the protein and is selectively conserved in mammalian TRPV proteins. J Neurosci 25(4):1015–1023

    Article  CAS  PubMed  Google Scholar 

  69. Scholey JM, Anderson KV (2006) Intraflagellar transport and cilium-based signaling. Cell 125(3):439–442

    Article  CAS  PubMed  Google Scholar 

  70. Singla V, Reiter JF (2006) The primary cilium as the cell’s antenna: signaling at a sensory organelle. Science 313(5787):629–633

    Article  CAS  PubMed  Google Scholar 

  71. Perkins LA, Hedgecock EM, Thomson JN, Culotti JG (1986) Mutant sensory cilia in the nematode Caenorhabditis elegans. Dev Biol 117(2):456–487

    Article  CAS  PubMed  Google Scholar 

  72. Inglis PN, Ou G, Leroux MR, Scholey JM (2006, November 27) The sensory cilia of Caenorhabditis elegans. In: WormBook (ed) The C. elegans Research Community, WormBook. doi:10.1895/wormbook.1.126.1, http://www.wormbook.org

  73. Bargmann CI, Horvitz HR (1991) Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron 7(5):729–742

    Article  CAS  PubMed  Google Scholar 

  74. Cole DG, Diener DR, Himelblau AL, Beech PL, Fuster JC, Rosenbaum JL (1998) Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J Cell Biol 141(4):993–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rosenbaum JL, Witman GB (2002) Intraflagellar transport. Nat Rev Mol Cell Biol 3(11):813–825

    Article  CAS  PubMed  Google Scholar 

  76. Scholey JM (2003) Intraflagellar transport. Annu Rev Cell Dev Biol 19:423–443

    Article  CAS  PubMed  Google Scholar 

  77. Qin H, Burnette DT, Bae YK, Forscher P, Barr MM, Rosenbaum JL (2005) Intraflagellar transport is required for the vectorial movement of TRPV channels in the ciliary membrane. Curr Biol 15(18):1695–1699

    Article  CAS  PubMed  Google Scholar 

  78. Ward S (1973) Chemotaxis by the nematode Caenorhabditis elegans: identification of attractants and analysis of the response by use of mutants. Proc Natl Acad Sci U S A 70(3):817–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Dusenbery DB, Sheridan RE, Russell RL (1975) Chemotaxis-defective mutants of the nematode Caenorhabditis elegans. Genetics 80(2):297–309

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Hukema RK, Rademakers S, Dekkers MP, Burghoorn J, Jansen G (2006) Antagonistic sensory cues generate gustatory plasticity in Caenorhabditis elegans. EMBO J 25(2):312–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Brown SA, Zumbrunn G, Fleury-Olela F, Preitner N, Schibler U (2002) Rhythms of mammalian body temperature can sustain peripheral circadian clocks. Curr Biol 12(18):1574–1583

    Article  CAS  PubMed  Google Scholar 

  82. Merrow M, Brunner M, Roenneberg T (1999) Assignment of circadian function for the Neurospora clock gene frequency. Nature 399(6736):584–586

    Article  CAS  PubMed  Google Scholar 

  83. McWatters HG, Devlin PF (2011) Timing in plants—a rhythmic arrangement. FEBS Lett 585(10):1474–1484

    Article  CAS  PubMed  Google Scholar 

  84. Ripperger JA, Jud C, Albrecht U (2011) The daily rhythm of mice. FEBS Lett 585(10):1384–1392

    Article  CAS  PubMed  Google Scholar 

  85. Merrow M, Spoelstra K, Roenneberg T (2005) The circadian cycle: daily rhythms from behaviour to genes. EMBO Rep 6(10):930–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Olmedo M, O’Neill JS, Edgar RS, Valekunja UK, Reddy AB, Merrow M (2012) Circadian regulation of olfaction and an evolutionarily conserved, nontranscriptional marker in Caenorhabditis elegans. Proc Natl Acad Sci U S A 109(50):20479–20484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Edgar RS, Green EW, Zhao Y, van Ooijen G, Olmedo M, Qin X, Xu Y, Pan M, Valekunja UK, Feeney KA, Maywood ES, Hastings MH, Baliga NS, Merrow M, Millar AJ, Johnson CH, Kyriacou CP, O'Neill JS, Reddy AB (2012) Peroxiredoxins are conserved markers of circadian rhythms. Nature 485(7399):459–464

    CAS  PubMed  PubMed Central  Google Scholar 

  88. O’Neill JS, Reddy AB (2011) Circadian clocks in human red blood cells. Nature 469(7331):498–503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Tanoue S, Krishnan P, Chatterjee A, Hardin PE (2008) G protein-coupled receptor kinase 2 is required for rhythmic olfactory responses in Drosophila. Curr Biol 18(11):787–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Granados-Fuentes D, Tseng A, Herzog ED (2006) A circadian clock in the olfactory bulb controls olfactory responsivity. J Neurosci 26(47):12219–12225

    Article  CAS  PubMed  Google Scholar 

  91. Huang CC, Yoshino-Koh K, Tesmer JJ (2009) A surface of the kinase domain critical for the allosteric activation of G protein-coupled receptor kinases. J Biol Chem 284(25):17206–17215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Boguth CA, Singh P, Huang CC, Tesmer JJ (2010) Molecular basis for activation of G protein-coupled receptor kinases. EMBO J 29(19):3249–3259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sterne-Marr R, Tesmer JJ, Day PW, Stracquatanio RP, Cilente JA, O’Connor KE, Pronin AN, Benovic JL, Wedegaertner PB (2003) G protein-coupled receptor Kinase 2/Gα(q/11) interaction. A novel surface on a regulator of G protein signaling homology domain for binding Gα subunits. J Biol Chem 278(8):6050–6058

    Article  CAS  PubMed  Google Scholar 

  94. Carman CV, Barak LS, Chen C, Liu-Chen LY, Onorato JJ, Kennedy SP, Caron MG, Benovic JL (2000) Mutational analysis of Gβγ and phospholipid interaction with G protein-coupled receptor kinase 2. J Biol Chem 275(14):10443–10452

    Article  CAS  PubMed  Google Scholar 

  95. Carman CV, Parent JL, Day PW, Pronin AN, Sternweis PM, Wedegaertner PB, Gilman AG, Benovic JL, Kozasa T (1999) Selective regulation of Gα(q/11) by an RGS domain in the G protein-coupled receptor kinase, GRK2. J Biol Chem 274(48):34483–34492

    Article  CAS  PubMed  Google Scholar 

  96. Noble B, Kallal LA, Pausch MH, Benovic JL (2003) Development of a yeast bioassay to characterize G protein-coupled receptor kinases. Identification of an NH2-terminal region essential for receptor phosphorylation. J Biol Chem 278(48):47466–47476

    Article  CAS  PubMed  Google Scholar 

  97. Pao CS, Barker BL, Benovic JL (2009) Role of the amino terminus of G protein-coupled receptor kinase 2 in receptor phosphorylation. Biochemistry 48(30):7325–7333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wood JF, Wang J, Benovic JL, Ferkey DM (2012) Structural domains required for Caenorhabditis elegans G protein-coupled receptor kinase 2 (GRK-2) function in vivo. J Biol Chem 287(16):12634–12644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ribas C, Penela P, Murga C, Salcedo A, Garcia-Hoz C, Jurado-Pueyo M, Aymerich I, Mayor F Jr (2007) The G protein-coupled receptor kinase (GRK) interactome: role of GRKs in GPCR regulation and signaling. Biochim Biophys Acta 1768(4):913–922

    Article  CAS  PubMed  Google Scholar 

  100. Kong G, Penn R, Benovic JL (1994) A β-adrenergic receptor kinase dominant negative mutant attenuates desensitization of the β2-adrenergic receptor. J Biol Chem 269(18):13084–13087

    CAS  PubMed  Google Scholar 

  101. Huang CC, Tesmer JJ (2011) Recognition in the face of diversity: interactions of heterotrimeric G proteins and G protein-coupled receptor (GPCR) kinases with activated GPCRs. J Biol Chem 286(10):7715–7721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Beautrait A, Michalski KR, Lopez TS, Mannix KM, McDonald DJ, Cutter AR, Medina CB, Hebert AM, Francis CJ, Bouvier M, Tesmer JJ, Sterne-Marr R (2014) Mapping the putative G protein-coupled receptor (GPCR) docking site on GPCR kinase 2: insights from intact cell phosphorylation and recruitment assays. J Biol Chem 289(36):25262–25275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tesmer VM, Kawano T, Shankaranarayanan A, Kozasa T, Tesmer JJ (2005) Snapshot of activated G proteins at the membrane: the Gα(q)-GRK2-Gβγ complex. Science 310(5754):1686–1690

    Article  CAS  PubMed  Google Scholar 

  104. Lodowski DT, Tesmer VM, Benovic JL, Tesmer JJ (2006) The structure of G protein-coupled receptor kinase (GRK)-6 defines a second lineage of GRKs. J Biol Chem 281(24):16785–16793

    Article  CAS  PubMed  Google Scholar 

  105. Dhami GK, Dale LB, Anborgh PH, O’Connor-Halligan KE, Sterne-Marr R, Ferguson SS (2004) G Protein-coupled receptor kinase 2 regulator of G protein signaling homology domain binds to both metabotropic glutamate receptor 1a and Gαq to attenuate signaling. J Biol Chem 279(16):16614–16620

    Article  CAS  PubMed  Google Scholar 

  106. Touhara K, Koch WJ, Hawes BE, Lefkowitz RJ (1995) Mutational analysis of the pleckstrin homology domain of the β-adrenergic receptor kinase. Differential effects on Gβγ and phosphatidylinositol 4,5-bisphosphate binding. J Biol Chem 270(28):17000–17005

    Article  CAS  PubMed  Google Scholar 

  107. Koch WJ, Inglese J, Stone WC, Lefkowitz RJ (1993) The binding site for the βγ subunits of heterotrimeric G proteins on the β-adrenergic receptor kinase. J Biol Chem 268(11):8256–8260

    CAS  PubMed  Google Scholar 

  108. Pitcher JA, Inglese J, Higgins JB, Arriza JL, Casey PJ, Kim C, Benovic JL, Kwatra MM, Caron MG, Lefkowitz RJ (1992) Role of βγ subunits of G proteins in targeting the β-adrenergic receptor kinase to membrane-bound receptors. Science 257(5074):1264–1267

    Article  CAS  PubMed  Google Scholar 

  109. Boughton AP, Yang P, Tesmer VM, Ding B, Tesmer JJ, Chen Z (2011) Heterotrimeric G protein β1γ2 subunits change orientation upon complex formation with G protein-coupled receptor kinase 2 (GRK2) on a model membrane. Proc Natl Acad Sci U S A 108(37):E667–E673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise M. Ferkey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wood, J.F., Ferkey, D.M. (2016). GRK Roles in C. elegans . In: Gurevich, V., Gurevich, E., Tesmer, J. (eds) G Protein-Coupled Receptor Kinases. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3798-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3798-1_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3796-7

  • Online ISBN: 978-1-4939-3798-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics