Skip to main content

G-Protein-Coupled Receptors and Their Kinases in Cardiac Regulation

  • Protocol
  • First Online:
G Protein-Coupled Receptor Kinases

Abstract

The superfamily of G-protein-coupled receptors (GPCRs), or seven transmembrane-spanning receptors (7TMRs), represents the largest family of membrane proteins that transduce cell signals via heterotrimeric G proteins from neurohormones, ions, and sensory stimuli to regulate virtually every aspect of mammalian physiology. In the normal and diseased heart, it is apparent that major players include the β-adrenergic receptors (βARs) and the angiotensin II type 1 receptors (AT1Rs). Their crucial role is reflected by the fact that, currently, they represent the direct targets of different approved cardiovascular drugs used in clinical practice. However, other “minor” receptors and their signaling pathways have been identified for roles that they exert on cardiac pathophysiology. GPCRs can, individually or collectively, regulate cardiac growth and function, including processes such as heart rate, contractility, and blood pressure, in response to catecholamines and other neurohormones. For these reasons, GPCRs are dynamically regulated to prevent overstimulation that could lead to cardiac diseases like heart failure (HF). This dampening process, known as desensitization, is initiated through GPCR phosphorylation by second-messenger kinases like protein kinase A (PKA) and PKC or the GPCR kinases (GRKs). PKA and PKC initiate heterologous desensitization, while GRKs initiate homologous desensitization, phosphorylating only agonist-occupied GPCRs. This GPCR regulation by GRKs induces recruitment and binding of β-arrestins that displace bound G proteins, therefore uncoupling receptors from their downstream signaling effectors. This process continues through β-arrestin-dependent internalization of receptors, that lead either to their degradation and downregulation or recycling (resensitization) to the membrane. Moreover, β-arrestin recruitment to GRK-phosphorylated receptors has been shown to lead to intracellular signaling, a process called G protein-dependent and independent signaling. Given their central role in cardiac physiology and in pathology, GPCRs are critical therapeutic targets in cardiac diseases and GRKs are emerging as innovative targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lin HH (2013) G-protein-coupled receptors and their (Bio) chemical significance win 2012 Nobel Prize in chemistry. Biomed J 36(3):118–124

    Article  PubMed  Google Scholar 

  2. Lymperopoulos A, Rengo G, Koch WJ (2013) Adrenergic nervous system in heart failure: pathophysiology and therapy. Circ Res 113:739–753

    Article  CAS  PubMed  Google Scholar 

  3. Lymperopoulos A, Bathgate A (2013) Arrestins in the cardiovascular system. Prog Mol Biol Transl Sci 118:297–334

    Article  CAS  PubMed  Google Scholar 

  4. Benovic JL, Strasser RH, Caron MG et al (1986) Beta-adrenergic receptor kinase: identification of a novel protein kinase that phosphorylates the agonist-occupied form of the receptor. Proc Natl Acad Sci U S A 83:2797–2801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Benovic JL, Mayor F Jr, Staniszewski C et al (1987) Purification and characterization of the beta-adrenergic receptor kinase. J Biol Chem 262:9026–9032

    CAS  PubMed  Google Scholar 

  6. Lohse MJ, Benovic JL, Codina J et al (1990) Beta-arrestin: a protein that regulates beta-adrenergic receptor function. Science 248:1547

    Article  CAS  PubMed  Google Scholar 

  7. O’Connell TD, Jensen BC, Baker AJ et al (2013) Cardiac alpha1-adrenergic receptors: novel aspects of expression, signaling mechanisms, physiologic function, and clinical importance. Pharmacol Rev 66(1):308–333

    Article  PubMed  Google Scholar 

  8. Cannavo A, Liccardo D, Koch WJ (2013) Targeting cardiac β-adrenergic signaling via GRK2 inhibition for heart failure therapy. Front Physiol 4:264

    Article  PubMed  PubMed Central  Google Scholar 

  9. Siryk-Bathgate A, Dabul S, Lymperopoulos A (2013) Current and future G protein-coupled receptor signaling targets for heart failure therapy. Drug Des Devel Ther 7:1209–1222

    PubMed  PubMed Central  Google Scholar 

  10. Bristow MR, Hershberger RE, Port JD et al (1990) Beta-adrenergic pathways in nonfailing and failing human ventricular myocardium. Circulation 82(Suppl 2):I12–I25

    CAS  PubMed  Google Scholar 

  11. Huang ZM, Gold JI, Koch WJ (2011) G protein-coupled receptor kinases in normal and failing myocardium. Front Biosci (Landmark Ed) 16:3047–3060

    Article  Google Scholar 

  12. Xiao RP (2001) Beta-adrenergic signaling in the heart: dual coupling of the beta2-adrenergic receptor to G(s) and G(i) proteins. Sci STKE 2001(104):re15

    CAS  PubMed  Google Scholar 

  13. Zhu WZ, Zheng M, Koch WJ et al (2001) Dual modulation of cell survival and cell death by β2-adrenergic signaling in adult mouse cardiac myocytes. Proc Natl Acad Sci U S A 98:1607–1612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dessy C, Balligand JL (2010) Beta3-adrenergic receptors in cardiac and vascular tissues emerging concepts and therapeutic perspectives. Adv Pharmacol 59:135–163

    Article  CAS  PubMed  Google Scholar 

  15. Cheng HJ, Zhang ZS, Onishi K, Ukai T, Sane DC, Cheng CP (2001) Upregulation of functional beta(3)-adrenergic receptor in the failing canine myocardium. Circ Res 89:599–606

    Article  CAS  PubMed  Google Scholar 

  16. Moniotte S, Kobzik L, Feron O et al (2001) Upregulation of beta(3)-adrenoceptors and altered contractile response to inotropic amines in human failing myocardium. Circulation 103:1649–1655

    Article  CAS  PubMed  Google Scholar 

  17. Sharma V, Parsons H, Allard MF et al (2008) Metoprolol increases the expression of beta(3)-adrenoceptors in the diabetic heart: effects on nitric oxide signaling and forkhead transcription factor-3. Eur J Pharmacol 595:44–51

    Article  CAS  PubMed  Google Scholar 

  18. Zhao Q, Wu TG, Jiang ZF et al (2007) Effect of beta-blockers on beta3-adrenoceptor expression in chronic heart failure. Cardiovasc Drugs Ther 21:85–90

    Article  CAS  PubMed  Google Scholar 

  19. Trappanese DM, Liu Y, McCormick RC et al (2015) Chronic β1-adrenergic blockade enhances myocardial β3-adrenergic coupling with nitric oxide-cGMP signaling in a canine model of chronic volume overload: new insight into mechanisms of cardiac benefit with selective β1-blocker therapy. Basic Res Cardiol 110(1):456

    Article  PubMed  Google Scholar 

  20. Montó F, Oliver E, Vicente D et al (2012) Different expression of adrenoceptors and GRKs in the human myocardium depends on heart failure etiology and correlates to clinical variables. Am J Physiol Heart Circ Physiol 303(3):H368–H376

    Article  PubMed  Google Scholar 

  21. Sjaastad I, Schiander I, Sjetnan A et al (2003) Increased contribution of alpha 1- vs. beta-adrenoceptor-mediated inotropic response in rats with congestive heart failure. Acta Physiol Scand 177(4):449–458

    Article  CAS  PubMed  Google Scholar 

  22. Knowlton KU, Michel MC, Itani M et al (1993) The alpha 1 A-adrenergic receptor subtype mediates biochemical, molecular, and morphologic features of cultured myocardial cell hypertrophy. J Biol Chem 268(21):15374–15380

    CAS  PubMed  Google Scholar 

  23. Du XJ, Gao XM, Kiriazis H et al (2006) Transgenic alpha1 A-adrenergic activation limits post-infarct ventricular remodeling and dysfunction and improves survival. Cardiovasc Res 71(4):735–743

    Article  CAS  PubMed  Google Scholar 

  24. Huang Y, Wright CD, Merkwan CL et al (2007) An alpha1A-adrenergic extracellular signal-regulated kinase survival signaling pathway in cardiac myocytes. Circulation 115(6):763–772

    Article  CAS  PubMed  Google Scholar 

  25. Rokosh DG, Stewart AF, Chang KC et al (1996) Alpha1-adrenergic receptor subtype mRNAs are differentially regulated by alpha1-adrenergic and other hypertrophic stimuli in cardiac myocytes in culture and in vivo. Repression of alpha1B and alpha1D but induction of alpha1C. J Biol Chem 271(10):5839–5843

    Article  CAS  PubMed  Google Scholar 

  26. Vinge LE, Øie E, Andersson Y et al (2001) Myocardial distribution and regulation of GRK and beta-arrestin isoforms in congestive heart failure in rats. Am J Physiol Heart Circ Physiol 281(6):H2490–H2499

    CAS  PubMed  Google Scholar 

  27. Rockman HA, Choi DJ, Rahman NU et al (1996) Receptor-specific in vivo desensitization by the G protein-coupled receptor kinase-5 in transgenic mice. Proc Natl Acad Sci U S A 93:9954–9959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Eckhart AD, Duncan SJ, Penn RB et al (2000) Hybrid transgenic mice reveal in vivo specificity of G protein-coupled receptor kinases in the heart. Circ Res 86:43–50

    Article  CAS  PubMed  Google Scholar 

  29. Reaves PY, Gelband CH, Wang H et al (1999) Permanent cardiovascular protection from hypertension by the AT1 receptor antisense gene therapy in hypertensive rat offspring. Circ Res 85:E44–E50

    Article  CAS  PubMed  Google Scholar 

  30. Kawano H, Do YS, Kawano Y et al (2000) Angiotensin II has multiple profibrotic effects in human cardiac fibroblasts. Circulation 101:1130–1137

    Article  CAS  PubMed  Google Scholar 

  31. Hein L, Barsh GS, Pratt RE et al (1995) Behavioural and cardiovascular effects of disrupting the angiotensin II type-2 receptor in mice. Nature 377:744–747

    Article  CAS  PubMed  Google Scholar 

  32. Yang Z, Bove CM, French BA et al (2002) Angiotensin II type 2 receptor overexpression preserves left ventricular function after myocardial infarction. Circulation 106:106–111

    Article  CAS  PubMed  Google Scholar 

  33. Zhu YC, Zhu YZ, Lu N et al (2003) Role of angiotensin AT1 and AT2 receptors in cardiac hypertrophy and cardiac remodelling. Clin Exp Pharmacol Physiol 30(12):911–918

    Article  CAS  PubMed  Google Scholar 

  34. Cerbai E, Crucitti A, Sartiani L et al (2000) Long-term treatment of spontaneously hypertensive rats with losartan and electrophysiological remodeling of cardiac myocytes. Cardiovasc Res 45:388–396

    Article  CAS  PubMed  Google Scholar 

  35. Wei H, Ahn S, Shenoy SK et al (2003) Independent beta-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2. Proc Natl Acad Sci U S A 100(19):10782–10787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Anand IS, Florea VG (2003) Alterations in ventricular structure: role of left ventricular remodeling. In: Mann DL (ed) Heart failure: a companion to Braunwald’s Heart Disease. WB Saunders Co, Philadelphia, pp 229–245

    Google Scholar 

  37. Salazar NC, Chen J, Rockman HA (2007) Cardiac GPCRs: GPCR signaling in healthy and failing hearts. Biochim Biophys Acta 1768:1006–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee MJ, Evans M, Hla T (1996) The inducible G protein-coupled receptor edg-1 signals via the G(i)/mitogen-activated protein kinase pathway. J Biol Chem 271:11272–11279

    Article  CAS  PubMed  Google Scholar 

  39. Lee MJ, Van Brocklyn JR, Thangada S, Liu CH, Hand AR, Menzeleev R et al (1998) Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science 279:1552–1555

    Article  CAS  PubMed  Google Scholar 

  40. Zondag GC, Postma FR, Etten IV et al (1998) Sphingosine 1-phosphate signalling through the G-protein-coupled receptor Edg-1. Biochem J 330:605–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Windh RT, Lee M-J, Hla T et al (1999) Differential coupling of the sphingosine 1-phosphate receptors Edg-1, Edg-3, and h218/Edg-5 to the Gi, Gq, and G12 families of heterotrimeric G proteins. J Biol Chem 274:27351–27358

    Article  CAS  PubMed  Google Scholar 

  42. Means CK, Brown JH (2009) Sphingosine-1-phosphate receptor signalling in the heart. Cardiovasc Res 82(2):193–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Watterson KR, Johnston E, Chalmers C et al (2002) Dual regulation of EDG1/S1P(1) receptor phosphorylation and internalization by protein kinase C and G-protein-coupled receptor kinase 2. J Biol Chem 277(8):5767–5777

    Article  CAS  PubMed  Google Scholar 

  44. Means CK, Miyamoto S, Chun J et al (2008) S1PR1 receptor localization confers selectivity for Gi-mediated cAMP and contractile responses. J Biol Chem 283:11954–11963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Errami M, Galindo CL, Tassa AT et al (2008) Doxycycline attenuates isoproterenol- and transverse aortic banding-induced cardiac hypertrophy in mice. J Pharmacol Exp Ther 324:1196–1203

    Article  CAS  PubMed  Google Scholar 

  46. Cannavo A, Rengo G, Liccardo D et al (2013) β1-adrenergic receptor and sphingosine-1-phosphate receptor 1 (S1PR1) reciprocal downregulation influences cardiac hypertrophic response and progression to heart failure: protective role of S1PR1 cardiac gene therapy. Circulation 128(15):1612–1622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Matkovich SJ, Diwan A, Klanke JL et al (2006) Cardiac-specific ablation of G-protein receptor kinase 2 redefines its roles in heart development and beta-adrenergic signaling. Circ Res 99(9):996–1003

    Article  CAS  PubMed  Google Scholar 

  48. Eschenhagen T (2008) Beta-adrenergic signaling in heart failure-adapt or die. Nat Med 14(5):485–487

    Article  CAS  PubMed  Google Scholar 

  49. Ungerer M, Böhm M, Elce JS et al (1993) Altered expression of beta-adrenergic receptor kinase and beta 1-adrenergic receptors in the failing human heart. Circulation 87:454–463

    Article  CAS  PubMed  Google Scholar 

  50. Ungerer M, Parruti G, Böhm M et al (1994) Expression of beta-arrestins and beta-adrenergic receptor kinases in the failing human heart. Circ Res 74:206–213

    Article  CAS  PubMed  Google Scholar 

  51. Koch WJ, Rockman HA, Samama P et al (1995) Cardiac function in mice overexpressing the beta-adrenergic receptor kinase or a beta ARK inhibitor. Science 268:1350–1353

    Article  CAS  PubMed  Google Scholar 

  52. Chen EP, Bittner HB, Akhter SA et al (1998) Myocardial recovery after ischemia and reperfusion injury is significantly impaired in hearts with transgenic overexpression of beta-adrenergic receptor kinase. Circulation 98(19 Suppl):I1249–I1253

    Google Scholar 

  53. Brinks H, Boucher M, Gao E et al (2010) Level of G protein-coupled receptor kinase-2 determines myocardial ischemia/reperfusion injury via pro- and anti-apoptotic mechanisms. Circ Res 107:1140–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Belmonte SL, Blaxall BC (2011) G protein coupled receptor kinases as therapeutic targets in cardiovascular disease. Circ Res 109:309–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Siderovski DP, Hessel A, Chung S et al (1996) A new family of regulators of G-protein-coupled receptors? Curr Biol 6:211–212

    Article  CAS  PubMed  Google Scholar 

  56. Koch WJ, Inglese J, Stone WC et al (1993) The binding site for the beta gamma subunits of heterotrimeric G proteins on the beta-adrenergic receptor kinase. J Biol Chem 268(11):8256–8260

    CAS  PubMed  Google Scholar 

  57. Pitcher JA, Inglese J, Higgins JB et al (1992) Role of beta gamma subunits of G proteins in targeting the beta-adrenergic receptor kinase to membrane-bound receptors. Science 257:1264–1267

    Article  CAS  PubMed  Google Scholar 

  58. Stoffel RH, Randall RR, Premont RT et al (1994) Palmitoylation of G protein-coupled receptor kinase, GRK6. Lipid modification diversity in the GRK family. J Biol Chem 269:27791–27794

    CAS  PubMed  Google Scholar 

  59. Huang CC, Tesmer JJ (2011) Recognition in the face of diversity: Interactions of heterotrimeric G proteins and G protein-coupled receptor (GPCR) kinases with activated GPCRs. J Biol Chem 286:7715–7721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lodowski DT, Tesmer VM, Benovic JL et al (2006) The structure of G protein-coupled receptor kinase (GRK)-6 defines a second lineage of GRKs. J Biol Chem 281:16785–16793

    Article  CAS  PubMed  Google Scholar 

  61. Patel CB, Noor N, Rockman HA (2010) Functional selectivity in adrenergic and angiotensin signaling systems. Mol Pharmacol 78:983–992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kim J, Ahn S, Ren XR et al (2005) Functional antagonism of different G protein-coupled receptor kinases for beta-arrestin-mediated angiotensin II receptor signaling. Proc Natl Acad Sci U S A 102:1442–1447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Iaccarino G, Rockman HA, Shotwell KF et al (1998) Myocardial overexpression of GRK3 in transgenic mice: evidence for in vivo selectivity of GRKs. Am J Physiol 275(4 Pt 2):H1298–H1306

    CAS  PubMed  Google Scholar 

  64. Vinge LE, von Lueder TG, Aasum E et al (2008) Cardiac-restricted expression of the carboxyl-terminal fragment of GRK3 uncovers distinct functions of GRK3 in regulation of cardiac contractility and growth: GRK3 controls cardiac alpha1-adrenergic receptor responsiveness. J Biol Chem 283(16):10601–10610

    Article  CAS  PubMed  Google Scholar 

  65. Chen EP, Bittner HB, Akhter SA et al (2001) Myocardial function in hearts with transgenic overexpression of the G protein-coupled receptor kinase 5. Ann Thorac Surg 71:1320–1324

    Article  CAS  PubMed  Google Scholar 

  66. Takagi C, Urasawa K, Yoshida I et al (1999) Enhanced GRK5 expression in the hearts of cardiomyopathic hamsters, J2N-k. Biochem Biophys Res Commun 262:206–210

    Article  CAS  PubMed  Google Scholar 

  67. Ping P, Anzai T, Gao M, Hammond HK (1997) Adenylyl cyclase and G protein receptor kinase expression during development of heart failure. Am J Physiol 273(2 Pt 2):H707–H717

    CAS  PubMed  Google Scholar 

  68. Dzimiri N, Muiya P, Andres E et al (2004) Differential functional expression of human myocardial G protein receptor kinases in left ventricular cardiac diseases. Eur J Pharmacol 489(3):167–177

    Article  CAS  PubMed  Google Scholar 

  69. Raake PW, Schlegel P, Ksienzyk J et al (2013) AAV6.βARKct cardiac gene therapy ameliorates cardiac function and normalizes the catecholaminergic axis in a clinically relevant large animal heart failure model. Eur Heart J 34(19):1437–1447

    Article  CAS  PubMed  Google Scholar 

  70. Rockman HA, Choi DJ, Akhter SA et al (1998) Control of myocardial contractile function by the level of beta-adrenergic receptor kinase 1 in gene-targeted mice. J Biol Chem 273(29):18180–18184

    Article  CAS  PubMed  Google Scholar 

  71. Raake PW, Vinge LE, Gao E et al (2008) G protein-coupled receptor kinase 2 ablation in cardiac myocytes before or after myocardial infarction prevents heart failure. Circ Res 103(4):413–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fan Q, Chen M, Zuo L et al (2013) Myocardial ablation of G protein-coupled receptor kinase 2 (GRK2) decreases ischemia/reperfusion injury through an anti-intrinsic apoptotic pathway. PLoS One 8(6):e66234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Thal DM, Homan KT, Chen J et al (2012) Paroxetine is a direct inhibitor of g protein-coupled receptor kinase 2 and increases myocardial contractility. ACS Chem Biol 7(11):1830–1839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fan Q, Chen M, Zuo L et al (2013) Myocardial ablation of G protein-coupled receptor kinase 2 (GRK2) decreases ischemia/reperfusion injury through an anti-intrinsic apoptotic pathway. PLoS One 8(6):277ra31

    Google Scholar 

  75. Rengo G, Lymperopoulos A, Zincarelli C et al (2009) Myocardial adeno-associated virus serotype 6-betaARKct gene therapy improves cardiac function and normalizes the neurohormonal axis in chronic heart failure. Circulation 119(1):89–98

    Article  CAS  PubMed  Google Scholar 

  76. Woodall MC, Ciccarelli M, Woodall BP et al (2014) G protein-coupled receptor kinase 2: a link between myocardial contractile function and cardiac metabolism. Circ Res 114(10):1661–1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang Y, Gao E, Lau WB et al (2015) GRK2-mediated desensitization of AdipoR1 in failing heart. Circulation 131(16):1392–1404.

    Google Scholar 

  78. Martini JS, Raake P, Vinge LE et al (2008) Uncovering G protein-coupled receptor kinase-5 as a histone deacetylase kinase in the nucleus of cardiomyocytes. Proc Natl Acad Sci U S A 105(34):12457–12462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hullmann JE, Grisanti LA, Makarewich CA et al (2014) GRK5-mediated exacerbation of pathological cardiac hypertrophy involves facilitation of nuclear NFAT activity. Circ Res 115(12):976–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Islam KN, Bae JW, Gao E et al (2013) Regulation of nuclear factor κB (NF-κB) in the nucleus of cardiomyocytes by G protein–coupled receptor kinase 5 (GRK5). J Biol Chem 288:35683–35689

    Article  CAS  PubMed  Google Scholar 

  81. Johnson LR, Robinson JD, Lester KN et al (2013) Distinct structural features of G protein-coupled receptor kinase 5 (GRK5) regulate its nuclear localization and DNA-binding ability. PLoS One 8(5):e62508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gold JI, Martini JS, Hullmann J et al (2013) Nuclear translocation of cardiac G protein-coupled receptor kinase 5 downstream of select Gq-activating hypertrophic ligands is a calmodulin-dependent process. PLoS One 8(3):e57324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gold JI, Gao E, Shang X et al (2012) Determining the absolute requirement of G protein-coupled receptor kinase 5 for pathological cardiac hypertrophy: short communication. Circ Res 111(8):1048–1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter J. Koch Ph.D., F.A.H.A. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Cannavo, A., de Lucia, C., Koch, W.J. (2016). G-Protein-Coupled Receptors and Their Kinases in Cardiac Regulation. In: Gurevich, V., Gurevich, E., Tesmer, J. (eds) G Protein-Coupled Receptor Kinases. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3798-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3798-1_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3796-7

  • Online ISBN: 978-1-4939-3798-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics