Skip to main content

In Vitro Culturing and Live Imaging of Drosophila Egg Chambers: A History and Adaptable Method

  • Protocol
  • First Online:
Oogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1457))

Abstract

The development of the Drosophila egg chamber encompasses a myriad of diverse germline and somatic events, and as such, the egg chamber has become a widely used and influential developmental model. Advantages of this system include physical accessibility, genetic tractability, and amenability to microscopy and live culturing, the last of which is the focus of this chapter. To provide adequate context, we summarize the structure of the Drosophila ovary and egg chamber, the morphogenetic events of oogenesis, the history of egg-chamber live culturing, and many of the important discoveries that this culturing has afforded. Subsequently, we discuss various culturing methods that have facilitated analyses of different stages of egg-chamber development and different types of cells within the egg chamber, and we present an optimized protocol for live culturing Drosophila egg chambers.

We designed this protocol for culturing late-stage Drosophila egg chambers and live imaging epithelial tube morphogenesis, but with appropriate modifications, it can be used to culture egg chambers of any stage. The protocol employs a liquid-permeable, weighted “blanket” to gently hold egg chambers against the coverslip in a glass-bottomed culture dish so the egg chambers can be imaged on an inverted microscope. This setup provides a more buffered, stable, culturing environment than previously published methods by using a larger volume of culture media, but the setup is also compatible with small volumes. This chapter should aid researchers in their efforts to culture and live-image Drosophila egg chambers, further augmenting the impressive power of this model system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spradling AC (1993) Developmental genetics of oogenesis. In: The development of Drosophila melanogaster. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 1–70

    Google Scholar 

  2. Horne-Badinovac S, Bilder D (2005) Mass transit: epithelial morphogenesis in the Drosophila egg chamber. Dev Dyn 232:559–574

    Article  Google Scholar 

  3. King RC (1970) Ovarian development in Drosophila melanogaster. Academic, New York

    Google Scholar 

  4. Hudson AM, Cooley L (2014) Methods for studying oogenesis. Methods 68:207–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ephrussi B, Beadle GW (1936) A technique of transplantation for Drosophila. Am Nat 70:218–225

    Article  Google Scholar 

  6. Srdic Z, Jacobs-Lorena M (1978) Drosophila egg chambers develop to mature eggs when cultured in vivo. Science 202:641–643

    Article  CAS  PubMed  Google Scholar 

  7. Gutzeit H, Koppa R (1982) Time-lapse film analysis of cytoplasmic streaming during late oogenesis of Drosophila. J Embryol Exp Morph 67:101–111

    Google Scholar 

  8. Montell DJ, Keshishian H, Spradling AC (1991) Laser ablation studies of the role of the Drosophila oocyte nucleus in pattern formation. Science 254:290–293

    Article  CAS  PubMed  Google Scholar 

  9. Lin H, Spradling AC (1993) Germline stem cell division and egg chamber development in transplanted Drosophila germaria. Dev Biol 159:140–152

    Article  CAS  PubMed  Google Scholar 

  10. Theurkauf W (1994) Premature microtubule-dependent cytoplasmic streaming in cappuccino and spire mutant oocytes. Science 265:2093–2096

    Article  CAS  PubMed  Google Scholar 

  11. Gilliland WD, Hughes SE, Cotitta JL, Takeo S, Xiang Y, Hawley RS (2007) The multiple roles of mps1 in Drosophila female meiosis. PLoS Genet 3:e113

    Article  PubMed  PubMed Central  Google Scholar 

  12. Legent K, Tissot N, Guichet A (2105) Visualizing microtubule networks during Drosophila oogenesis using fixed and live imaging. Methods Mol Biol 1328:99–112

    Article  Google Scholar 

  13. Tekotte H, Tollervey D, Davis I (2007) Imaging the migrating border cell cluster in living Drosophila egg chambers. Dev Dyn 236:2818–2824

    Article  PubMed  Google Scholar 

  14. Parton RM, Valles AM, Dobbie IM et al (2010) Live cell imaging in Drosophila melanogaster. Cold Spring Harb Protoc 2010:pdb.top75

    Article  PubMed  Google Scholar 

  15. Weil TT, Parton RM, Davis I (2012) Preparing individual Drosophila egg chambers for live imaging. J Vis Exp 60:e3679

    Google Scholar 

  16. Grace TDC (1962) Establishment of four strains of cells from insect tissues grown in vitro. Nature 195:788–789

    Article  CAS  PubMed  Google Scholar 

  17. Schneider I (1964) Differentiation of larval Drosophila eye-antennal discs in vitro. J Exp Zool 156:91–104

    Article  CAS  PubMed  Google Scholar 

  18. Robb JA (1969) Maintenance of imaginal discs of Drosophila melanogaster in chemically defined media. J Cell Biol 41:876–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Morris LX, Spradling AC (2011) Long-term live imaging provides new insight into stem cell regulation and germline-soma coordination in the Drosophila ovary. Development 138:2207–2215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Petri WH, Mindrinos MH, Lombard MF, Margaritis LH (1979) In vitro development of the Drosophila chorion in a chemically defined organ culture medium. Dev Genes Evol 186:351–362

    Google Scholar 

  21. Dorman JB, James KE, Fraser SE, Kiehart DP, Berg CA (2004) bullwinkle is required for epithelial morphogenesis during Drosophila oogenesis. Dev Biol 267:320–341

    Article  CAS  PubMed  Google Scholar 

  22. Theurkauf WE, Hawley RS (1992) Meiotic spindle assembly in Drosophila females: behavior of nonexchange chromosomes and the effects of mutations in the nod kinesin-like protein. J Cell Biol 116:1167–1180

    Article  CAS  PubMed  Google Scholar 

  23. Wang S, Hazelrigg T (1994) Implications for bcd mRNA localization from spatial distribution of exu protein in Drosophila oogenesis. Nature 369:400–403

    Article  CAS  PubMed  Google Scholar 

  24. Theurkauf WE, Hazelrigg TI (1998) In vivo analyses of cytoplasmic transport and cytoskeletal organization during Drosophila oogenesis: characterization of a multi-step anterior localization pathway. Development 125:3655–3666

    CAS  PubMed  Google Scholar 

  25. Fichelson P, Moch C, Ivanovitch K et al (2009) Live-imaging of single stem cells within their niche reveals that a U3snoRNP component segregates asymmetrically and is required for self-renewal in Drosophila. Nat Cell Biol 11:685–693

    Article  CAS  PubMed  Google Scholar 

  26. Zhao T, Graham OS, Raposo A, St. Johnston D (2012) Growing microtubules push the oocyte nucleus to polarize the Drosophila dorsal-ventral axis. Science 336:999–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cox RT, Spradling AC (2003) A Balbiani body and the fusome mediate mitochondrial inheritance during Drosophila oogenesis. Development 130:1579–1590

    Article  CAS  PubMed  Google Scholar 

  28. Tootle TL, Spradling AC (2008) Drosophila Pxt: a cyclooxygenase-like facilitator of follicle maturation. Development 135:839–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Spracklen AJ, Fagan TN, Lovander KE, Tootle TL (2014) The pros and cons of common actin labeling tools for visualizing actin dynamics during Drosophila oogenesis. Dev Biol 393:209–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Forrest KM, Gavis ER (2003) Live imaging of endogenous RNA reveals a diffusion and entrapment mechanism for nanos mRNA localization in Drosophila. Curr Biol 13:1159–1168

    Article  CAS  PubMed  Google Scholar 

  31. Becalska AN, Gavis ER (2009) Lighting up mRNA localization in Drosophila oogenesis. Development 136:2493–2503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Airoldi SJ, McLean PF, Shimada Y, Cooley L (2011) Intercellular protein movement in syncytial Drosophila follicle cells. J Cell Sci 124:4077–4086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McLean PF, Cooley L (2013) Protein equilibration through somatic ring canals in Drosophila. Science 340:1445–1447

    Article  CAS  PubMed  Google Scholar 

  34. Osterfield M, Du X, Schüpbach T, Wieschaus E, Shvartsman SY (2013) Three-dimensional epithelial morphogenesis in the developing Drosophila egg. Dev Cell 24:400–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Prasad M, Montell DJ (2007) Cellular and molecular mechanisms of border cell migration analyzed using time-lapse live-cell imaging. Dev Cell 12:997–1005

    Article  CAS  PubMed  Google Scholar 

  36. Prasad M, Jang AC, Starz-Gaiano M, Melani M, Montell DJ (2007) A protocol for culturing Drosophila melanogaster stage-9 egg chambers for live imaging. Nat Protoc 2:2467–2473

    Article  CAS  PubMed  Google Scholar 

  37. Bianco A, Poukkula M, Cliffe A, Mathieu J, Luque CM, Fulga TA, Rørth P (2007) Two distinct modes of guidance signaling during collective migration of border cells. Nature 448:362–365

    Article  CAS  PubMed  Google Scholar 

  38. Cliffe A, Poukkula M, Rørth P (2009) Culturing Drosophila egg chambers and imaging border cell migration. Nat Protoc 10:289

    Google Scholar 

  39. Wang X, He L, Wu YI, Hahn KM, Montell DJ (2010) Light-mediated activation reveals a key role for Rac in collective guidance of cell movement in vivo. Nat Cell Biol 12:591–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. He L, Wang X, Tang HL, Montell DJ (2010) Tissue elongation requires oscillating contractions of a basal actomyosin network. Nat Cell Biol 12:1133–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wu YI, Wang X, He L, Montell D, Hahn KM (2011) Spatiotemporal control of small GTPases with light using the LOV domain. Methods Enzymol 497:393–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cai D, Chen S-C, Prasad M, He L, Wang X, Choesmel-Cadamuro V, Sawyer JK, Danuser G, Montell DJ (2014) Mechanical feedback through E-Cadherin promotes direction sensing during collective cell migration. Cell 157:1146–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Haigo SL, Bilder D (2011) Global tissue revolutions in a morphogenetic movement controlling elongation. Science 331:1071–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cetera M, Ramirez-San Juan GR, Oakes PW, Lewellyn L, Fairchild MJ, Tanentzapf G, Gardel ML, Horne-Badovinac S (2014) Epithelial rotation promotes the global alignment of contractile actin bundles during Drosophila egg chamber elongation. Nat Commun 5:1–12

    Article  Google Scholar 

  45. He L, Wang X, Montell DJ (2011) Shining light on Drosophila oogenesis: live imaging of egg development. Curr Opin Genet Dev 21:1–8

    Article  Google Scholar 

  46. Kiehart DP, Montague RA, Rickoll WL, Foard D, Thomas GH (1994) High-resolution microscopic methods for the analysis of cellular movements in Drosophila embryos. Methods Cell Biol 44:507–532

    Article  CAS  PubMed  Google Scholar 

  47. Peters NC, Berg CA (2016) Dynamin-mediated endocytosis is required for tube closure, cell intercalation, and biased apical expansion during epithelial tubulogenesis in the Drosophila ovary. Dev Biol 409:38–53

    Article  Google Scholar 

  48. Manning L, Starz-Gaiano M (2015) Culturing Drosophila egg chambers and investigating developmental processes through live imaging. Methods Mol Biol 1328:73–88

    Article  PubMed  Google Scholar 

  49. Henry JQ, Martindale MQ (2011) Tool making and handling of marine invertebrate embryos and larvae. Embryology Course Manual, Marine Biological Laboratory, Woods Hole, MA

    Google Scholar 

  50. Huang J, Zhou W, Dong W, Watson AM, Hong Y (2009) Directed, efficient, and versatile modifications of the Drosophila genome by genomic engineering. Proc Natl Acad Sci 106:8284–8289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Queenan AM, Ghabrial A, Schüpbach T (1997) Ectopic activation of torpedo/Egfr, a Drosophila receptor tyrosine kinase, dorsalizes both the eggshell and the embryo. Development 124:3871–3880

    CAS  PubMed  Google Scholar 

  52. Bloor JW, Kiehart DP (2001) zipper nonmuscle myosin-II functions downstream of PS2 integrin in Drosophila myogenesis and is necessary for myofibril formation. Dev Biol 239:215–228

    Article  CAS  PubMed  Google Scholar 

  53. Peters NC, Thayer NH, Kerr SA, Tompa M, Berg CA (2013) Following the ‘tracks’: Tramtrack69 regulates epithelial tube morphogenesis in the Drosophila ovary through Dynamin, Paxillin, and the homeobox protein Mirror. Dev Biol 378:154–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zimmerman SG, Peters NC, Altaras AE, Berg CA (2013) Optimized RNA ISH, RNA FISH and protein-RNA double labeling (IF/FISH) in Drosophila ovaries. Nat Protoc 8:2158–2179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Echalier G (1976) In vitro established lines of Drosophila cells and applications in physiological genetics. Int Conf on Invertebrate Tissue Culture; Applications in Medicine. Academic, New York, pp 131–150

    Google Scholar 

  56. Vollmar H (1972) Frühembryonale gestaltungsbewegungen im vitalgefärbten dotter- entoplasma-system intakter und fragmentierter eier von Acheta domesticus L. (Orthopteroidea). Wilhelm Roux Arch EntwMech Org 171:228–243

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful for support from the National Institutes of Health, 2 R01 GM079433 to CAB and 1S10 OD016240 to the W. M. Keck Imaging Center at the University of Washington. We thank the Bloomington Drosophila Stock Center and Trudi Schüpbach, Dan Kiehart, and Miriam Osterfield for fly strains.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nathaniel C. Peters or Celeste A. Berg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Peters, N.C., Berg, C.A. (2016). In Vitro Culturing and Live Imaging of Drosophila Egg Chambers: A History and Adaptable Method. In: Nezis, I. (eds) Oogenesis. Methods in Molecular Biology, vol 1457. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3795-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3795-0_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3793-6

  • Online ISBN: 978-1-4939-3795-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics