Skip to main content

High-Throughput Live-Cell Microscopy Analysis of Association Between Chromosome Domains and the Nucleolus in S. cerevisiae

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1455))

Abstract

Spatial organization of the genome has important impacts on all aspects of chromosome biology, including transcription, replication, and DNA repair. Frequent interactions of some chromosome domains with specific nuclear compartments, such as the nucleolus, are now well documented using genome-scale methods. However, direct measurement of distance and interaction frequency between loci requires microscopic observation of specific genomic domains and the nucleolus, followed by image analysis to allow quantification. The fluorescent repressor operator system (FROS) is an invaluable method to fluorescently tag DNA sequences and investigate chromosome position and dynamics in living cells. This chapter describes a combination of methods to define motion and region of confinement of a locus relative to the nucleolus in cell’s nucleus, from fluorescence acquisition to automated image analysis using two dedicated pipelines.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. van Steensel B, Dekker J (2010) Genomics tools for unraveling chromosome architecture. Nat Biotechnol 28(10):1089–1095

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ay F, Noble WS (2015) Analysis methods for studying the 3D architecture of the genome. Genome Biol 16:183

    Article  PubMed  PubMed Central  Google Scholar 

  3. Williamson I, Berlivet S, Eskeland R, Boyle S, Illingworth RS, Paquette D, Dostie J, Bickmore WA (2014) Spatial genome organization: contrasting views from chromosome conformation capture and fluorescence in situ hybridization. Genes Dev 28(24):2778–2791

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dion V, Gasser SM (2013) Chromatin movement in the maintenance of genome stability. Cell 152(6):1355–1364

    Article  CAS  PubMed  Google Scholar 

  5. Huet S, Lavelle C, Ranchon H, Carrivain P, Victor JM, Bancaud A (2014) Relevance and limitations of crowding, fractal, and polymer models to describe nuclear architecture. Int Rev Cell Mol Biol 307:443–479

    Article  CAS  PubMed  Google Scholar 

  6. Hajjoul H, Mathon J, Ranchon H, Goiffon I, Mozziconacci J, Albert B, Carrivain P, Victor JM, Gadal O, Bystricky K, Bancaud A (2013) High-throughput chromatin motion tracking in living yeast reveals the flexibility of the fiber throughout the genome. Genome Res 23(11):1829–1838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang R, Mozziconacci J, Bancaud A, Gadal O (2015) Principles of chromatin organization in yeast: relevance of polymer models to describe nuclear organization and dynamics. Curr Opin Cell Biol 34:54–60

    Article  PubMed  Google Scholar 

  8. Albert B, Mathon J, Shukla A, Saad H, Normand C, Leger-Silvestre I, Villa D, Kamgoue A, Mozziconacci J, Wong H, Zimmer C, Bhargava P, Bancaud A, Gadal O (2013) Systematic characterization of the conformation and dynamics of budding yeast chromosome XII. J Cell Biol 202(2):201–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Meister P, Gehlen LR, Varela E, Kalck V, Gasser SM (2010) Visualizing yeast chromosomes and nuclear architecture. Methods Enzymol 470:535–567

    Article  CAS  PubMed  Google Scholar 

  10. Berger AB, Cabal GG, Fabre E, Duong T, Buc H, Nehrbass U, Olivo-Marin JC, Gadal O, Zimmer C (2008) High-resolution statistical mapping reveals gene territories in live yeast. Nat Methods 5(12):1031–1037

    Article  CAS  PubMed  Google Scholar 

  11. Serge A, Bertaux N, Rigneault H, Marguet D (2008) Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes. Nat Methods 5(8):687–694

    Article  CAS  PubMed  Google Scholar 

  12. Hajjoul HM, Mathon J, Viero Y, Bancaud A (2011) Optimized micromirrors for three-dimensional single-particle tracking in living cells. Appl Phys Lett 98:243701

    Article  Google Scholar 

  13. Therizols P, Duong T, Dujon B, Zimmer C, Fabre E (2010) Chromosome arm length and nuclear constraints determine the dynamic relationship of yeast subtelomeres. Proc Natl Acad Sci U S A 107(5):2025–2030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Weber SC, Thompson MA, Moerner WE, Spakowitz AJ, Theriot JA (2012) Analytical tools to distinguish the effects of localization error, confinement, and medium elasticity on the velocity autocorrelation function. Biophys J 102(11):2443–2450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Backlund MP, Joyner R, Weis K, Moerner WE (2014) Correlations of three-dimensional motion of chromosomal loci in yeast revealed by the double-helix point spread function microscope. Mol Biol Cell 25(22):3619–3629

    Article  PubMed  PubMed Central  Google Scholar 

  16. Michaelis C, Ciosk R, Nasmyth K (1997) Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91(1):35–45

    Article  CAS  PubMed  Google Scholar 

  17. Robinett CC, Straight A, Li G, Willhelm C, Sudlow G, Murray A, Belmont AS (1996) In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J Cell Biol 135(6 Pt 2):1685–1700

    Article  CAS  PubMed  Google Scholar 

  18. Lassadi I, Bystricky K (2011) Tracking of single and multiple genomic loci in living yeast cells. Methods Mol Biol 745:499–522

    Article  CAS  PubMed  Google Scholar 

  19. Loiodice I, Dubarry M, Taddei A (2014) Scoring and manipulating gene position and dynamics using FROS in budding yeast. Curr Protoc Cell Biol 62: Unit 22 17 21–14

    Google Scholar 

  20. Dubarry M, Loiodice I, Chen CL, Thermes C, Taddei A (2011) Tight protein-DNA interactions favor gene silencing. Genes Dev 25(13):1365–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Saad H, Gallardo F, Dalvai M, Tanguy-le-Gac N, Lane D, Bystricky K (2014) DNA dynamics during early double-strand break processing revealed by non-intrusive imaging of living cells. PLoS Genet 10(3):e1004187

    Article  PubMed  PubMed Central  Google Scholar 

  22. Shaham S (2006) WormBook: methods in cell biology. The C. elegans Research Community (ed), WormBook

    Google Scholar 

  23. Winey M, Yarar D, Giddings TH Jr, Mastronarde DN (1997) Nuclear pore complex number and distribution throughout the Saccharomyces cerevisiae cell cycle by three-dimensional reconstruction from electron micrographs of nuclear envelopes. Mol Biol Cell 8(11):2119–2132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang B, Zerubia J, Olivo-Marin J (2007) Gaussian approximations of fluorescence microscope point-spread function models. Appl Opt 46(10):1819

    Article  PubMed  Google Scholar 

  25. Backlund MP, Joyner R, Moerner WE (2015) Chromosomal locus tracking with proper accounting of static and dynamic errors. Phys Rev E Stat Nonlin Soft Matter Phys 91(6):062716

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chuang CH, Carpenter AE, Fuchsova B, Johnson T, de Lanerolle P, Belmont AS (2006) Long-range directional movement of an interphase chromosome site. Curr Biol 16(8):825–831

    Article  CAS  PubMed  Google Scholar 

  27. Saner N, Karschau J, Natsume T, Gierlinski M, Retkute R, Hawkins M, Nieduszynski CA, Blow JJ, de Moura AP, Tanaka TU (2013) Stochastic association of neighboring replicons creates replication factories in budding yeast. J Cell Biol 202(7):1001–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This work was supported by ATS-Nudgene and Emergence-CLEMgene of the Toulouse-IDEX. O.G. and C.N. are supported by Agence Nationale de la Recherche (ANDY). We thank I. Léger-Silvestre for thoughtful discussions and technical advices. Julien Mathon wrote the MTT-based executable files.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Gadal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wang, R., Normand, C., Gadal, O. (2016). High-Throughput Live-Cell Microscopy Analysis of Association Between Chromosome Domains and the Nucleolus in S. cerevisiae . In: Németh, A. (eds) The Nucleolus. Methods in Molecular Biology, vol 1455. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3792-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3792-9_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3790-5

  • Online ISBN: 978-1-4939-3792-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics