Skip to main content

Quantitative Proteomic Analysis of the Human Nucleolus

  • Protocol
  • First Online:
Book cover The Nucleolus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1455))

Abstract

Recent years have witnessed spectacular progress in the field of mass spectrometry (MS)-based quantitative proteomics, including advances in instrumentation, chromatography, sample preparation methods, and experimental design for multidimensional analyses. It is now possible not only to identify most of the protein components of a cell proteome in a single experiment, but also to describe additional proteome dimensions, such as protein turnover rates, posttranslational modifications, and subcellular localization. Furthermore, by comparing the proteome at different time points, it is possible to create a “time-lapse” view of proteome dynamics. By combining high-throughput quantitative proteomics with detailed subcellular fractionation protocols and data analysis techniques it is also now possible to characterize in detail the proteomes of specific subcellular organelles, providing important insights into cell regulatory mechanisms and physiological responses. In this chapter we present a reliable workflow and protocol for MS-based analysis and quantitation of the proteome of nucleoli isolated from human cells. The protocol presented is based on a SILAC analysis of human MCF10A-Src-ER cells with analysis performed on a Q-Exactive Plus Orbitrap MS instrument (Thermo Fisher Scientific). The subsequent chapter describes how to process the resulting raw MS files from this experiment using MaxQuant software and data analysis procedures to evaluate the nucleolar proteome using customized R scripts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Larance M, Lamond AI (2015) Multidimensional proteomics for cell biology. Nat Rev Mol Cell Biol 16(5):269–280. doi:10.1038/nrm3970

    Article  CAS  PubMed  Google Scholar 

  2. Rodríguez-Suárez E, Whetton AD (2013) The application of quantification techniques in proteomics for biomedical research. Mass Spectrom Rev 32(1):1–26

    Article  PubMed  Google Scholar 

  3. Mann M, Kulak Nils A, Nagaraj N, Cox J (2013) The coming age of complete, accurate, and ubiquitous proteomes. Mol Cell 49(4):583–590

    Article  CAS  PubMed  Google Scholar 

  4. Altelaar AFM, Munoz J, Heck AJR (2013) Next-generation proteomics: towards an integrative view of proteome dynamics. Nat Rev Genet 14(1):35–48

    Article  CAS  PubMed  Google Scholar 

  5. Jünger MA, Aebersold R (2014) Mass spectrometry-driven phosphoproteomics: patterning the systems biology mosaic. Wiley Interdiscipl Rev 3(1):83–112

    Article  Google Scholar 

  6. Lam YW, Lamond AI, Mann M, Andersen JS (2007) Analysis of nucleolar protein dynamics reveals the nuclear degradation of ribosomal proteins. Curr Biol 17(9):749–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Andersen JS, Lyon CE, Fox AH, Leung AKL, Lam YW, Steen H, Mann M, Lamond AI (2002) Directed proteomic analysis of the human nucleolus. Curr Biol 12(1):1–11

    Article  PubMed  Google Scholar 

  8. Ong SE, Kratchmarova I, Mann M (2002) Properties of 13C-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). J Proteome Res 2(2):173–181

    Article  Google Scholar 

  9. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386

    Article  CAS  PubMed  Google Scholar 

  10. Ong S-E, Foster LJ, Mann M (2003) Mass spectrometric-based approaches in quantitative proteomics. Methods 29(2):124–130

    Article  CAS  PubMed  Google Scholar 

  11. Mann M (2014) Fifteen years of stable isotope labeling by amino acids in cell culture (SILAC). In: Warscheid B (ed) Stable isotope labeling by amino acids in cell culture (SILAC), vol 1188, Methods in molecular biology. Springer, New York, NY, pp 1–7

    Google Scholar 

  12. Soule HD, Maloney TM, Wolman SR, Peterson WD, Brenz R, McGrath CM, Russo J, Pauley RJ, Jones RF, Brooks SC (1990) Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res 50(18):6075–6086

    CAS  PubMed  Google Scholar 

  13. Iliopoulos D, Hirsch HA, Struhl K (2009) An epigenetic switch involving NF-κB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 139(4):693–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K (2009) Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res 69(19):7507–7511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

D. B. is funded by the Human Induced Pluripotent Stem Cells Initiative (098503/E/12/Z). A.N. is funded by the BBSRC sLoLa grant (BB/K003801/1). This work was funded by a Wellcome Trust Programme grant to A. I. L (108058/Z/15/Z) and supported by a Wellcome Trust Strategic award (105024/Z/14/Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angus I. Lamond .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bensaddek, D., Nicolas, A., Lamond, A.I. (2016). Quantitative Proteomic Analysis of the Human Nucleolus. In: Németh, A. (eds) The Nucleolus. Methods in Molecular Biology, vol 1455. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3792-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3792-9_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3790-5

  • Online ISBN: 978-1-4939-3792-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics