Cilia pp 123-147 | Cite as

Visualization and Manipulation of Cilia and Intraciliary Calcium in the Zebrafish Left–Right Organizer

  • Shiaulou Yuan
  • Martina BruecknerEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1454)


Cilia play a key role in the determination of the left–right axis in vertebrates by generating and sensing flow of extraembryonic fluid at the left–right organizer (LRO). Perception of cilia-directed flow triggers a calcium signaling cascade which originates within the cilium itself and then is relayed into the surrounding mesendodermal tissue, thereby directing organ situs via the nodal pathway. Two types of cilia, motile and immotile, function simultaneously to coordinate and direct asymmetric intraciliary calcium signaling cues in the LRO. Here, we describe tools, reagents, and methodologies for the visualization and manipulation of both cilia types as well as intraciliary calcium signaling in the LRO of zebrafish.

Key words

Cilium Nodal cilia Kupffer’s vesicle GECI 



This work was funded by NIH grant 1R01HL125885-01A1 (to M.B.) and a Hartwell Foundation postdoctoral fellowship (to S.Y.).


  1. 1.
    Dolk H, Loane M, Garne E (2010) The prevalence of congenital anomalies in Europe. Adv Exp Med Biol 686:349–364. doi: 10.1007/978-90-481-9485-8_20 CrossRefGoogle Scholar
  2. 2.
    Dolk H, Loane M, Garne E (2011) Congenital heart defects in Europe: prevalence and perinatal mortality, 2000 to 2005. Circulation 123(8):841–849. doi: 10.1161/CIRCULATIONAHA.110.958405 CrossRefGoogle Scholar
  3. 3.
    Heron M, Hoyert DL, Murphy SL, Xu J, Kochanek KD, Tejada-Vera B (2009) Deaths: final data for 2006. National vital statistics reports: from the Centers for Disease Control and Prevention, National Center for Health Statistics, National Vital Statistics System 57(14):1–134Google Scholar
  4. 4.
    Cuneo BF (2006) Outcome of fetal cardiac defects. Curr Opin Pediatr 18(5):490–496CrossRefGoogle Scholar
  5. 5.
    van der Linde D, Konings EE, Slager MA, Witsenburg M, Helbing WA, Takkenberg JJ, Roos-Hesselink JW (2011) Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol 58(21):2241–2247. doi: 10.1016/j.jacc.2011.08.025 CrossRefPubMedGoogle Scholar
  6. 6.
    Zhu L, Belmont JW, Ware SM (2006) Genetics of human heterotaxias. Eur J Hum Genet 14(1):17–25Google Scholar
  7. 7.
    Pierpont ME, Basson CT, Benson DW Jr, Gelb BD, Giglia TM, Goldmuntz E, McGee G, Sable CA, Srivastava D, Webb CL (2007) Genetic basis for congenital heart defects: current knowledge: a scientific statement from the American Heart Association Congenital Cardiac Defects Committee, Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation 115(23):3015–3038CrossRefGoogle Scholar
  8. 8.
    Ransom J, Srivastava D (2007) The genetics of cardiac birth defects. Semin Cell Dev Biol 18(1):132–139CrossRefGoogle Scholar
  9. 9.
    Weismann CG, Gelb BD (2007) The genetics of congenital heart disease: a review of recent developments. Curr Opin Cardiol 22(3):200–206CrossRefGoogle Scholar
  10. 10.
    Bruneau BG (2008) The developmental genetics of congenital heart disease. Nature 451(7181):943–948. doi: 10.1038/nature06801 CrossRefGoogle Scholar
  11. 11.
    Belmont JW, Mohapatra B, Towbin JA, Ware SM (2004) Molecular genetics of heterotaxy syndromes. Curr Opin Cardiol 19(3):216–220CrossRefGoogle Scholar
  12. 12.
    Kennedy MP, Omran H, Leigh MW, Dell S, Morgan L, Molina PL, Robinson BV, Minnix SL, Olbrich H, Severin T, Ahrens P, Lange L, Morillas HN, Noone PG, Zariwala MA, Knowles MR (2007) Congenital heart disease and other heterotaxic defects in a large cohort of patients with primary ciliary dyskinesia. Circulation 115(22):2814–2821CrossRefGoogle Scholar
  13. 13.
    Sutherland MJ, Ware SM (2009) Disorders of left-right asymmetry: heterotaxy and situs inversus. Am J Med Genet C Semin Med Genet 151C(4):307–317CrossRefGoogle Scholar
  14. 14.
    Yuan S, Zaidi S, Brueckner M (2013) Congenital heart disease: emerging themes linking genetics and development. Curr Opin Genet Dev 23(3):352–359. doi: 10.1016/j.gde.2013.05.004 CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Goetz SC, Anderson KV (2010) The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet 11(5):331–344. doi: 10.1038/nrg2774 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Satir P, Christensen ST (2007) Overview of structure and function of mammalian cilia. Annu Rev Physiol 69:377–400. doi: 10.1146/annurev.physiol.69.040705.141236 CrossRefPubMedGoogle Scholar
  17. 17.
    Satir P, Pedersen LB, Christensen ST (2010) The primary cilium at a glance. J Cell Sci 123(Pt 4):499–503. doi: 10.1242/jcs.050377 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Pedersen LB, Rosenbaum JL (2008) Intraflagellar transport (IFT) role in ciliary assembly, resorption and signalling. Curr Top Dev Biol 85:23–61. doi: 10.1016/S0070-2153(08)00802-8 CrossRefPubMedGoogle Scholar
  19. 19.
    Basu B, Brueckner M (2008) Cilia multifunctional organelles at the center of vertebrate left-right asymmetry. Curr Top Dev Biol 85:151–174. doi: 10.1016/S0070-2153(08)00806-5 CrossRefPubMedGoogle Scholar
  20. 20.
    Nonaka S, Tanaka Y, Okada Y, Takeda S, Harada A, Kanai Y, Kido M, Hirokawa N (1998) Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein [published erratum appears in Cell 1999 Oct 1;99(1):117]. Cell 95(6):829–837CrossRefPubMedGoogle Scholar
  21. 21.
    Yoshiba S, Shiratori H, Kuo IY, Kawasumi A, Shinohara K, Nonaka S, Asai Y, Sasaki G, Belo JA, Sasaki H, Nakai J, Dworniczak B, Ehrlich BE, Pennekamp P, Hamada H (2012) Cilia at the node of mouse embryos sense fluid flow for left-right determination via Pkd2. Science 338(6104):226–231. doi: 10.1126/science.1222538 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Yoshiba S, Hamada H (2014) Roles of cilia, fluid flow, and Ca2+ signaling in breaking of left-right symmetry. Trends Genet 30(1):10–17. doi: 10.1016/j.tig.2013.09.001 CrossRefPubMedGoogle Scholar
  23. 23.
    Nakamura T, Hamada H (2012) Left-right patterning: conserved and divergent mechanisms. Development 139(18):3257–3262. doi: 10.1242/dev.061606 CrossRefPubMedGoogle Scholar
  24. 24.
    Akerboom J, Chen TW, Wardill TJ, Tian L, Marvin JS, Mutlu S, Calderon NC, Esposti F, Borghuis BG, Sun XR, Gordus A, Orger MB, Portugues R, Engert F, Macklin JJ, Filosa A, Aggarwal A, Kerr RA, Takagi R, Kracun S, Shigetomi E, Khakh BS, Baier H, Lagnado L, Wang SS, Bargmann CI, Kimmel BE, Jayaraman V, Svoboda K, Kim DS, Schreiter ER, Looger LL (2012) Optimization of a GCaMP calcium indicator for neural activity imaging. J Neurosci 32(40):13819–13840. doi: 10.1523/JNEUROSCI.2601-12.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Delling M, DeCaen PG, Doerner JF, Febvay S, Clapham DE (2013) Primary cilia are specialized calcium signalling organelles. Nature 504(7479):311–314. doi: 10.1038/nature12833 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Jin X, Mohieldin AM, Muntean BS, Green JA, Shah JV, Mykytyn K, Nauli SM (2013) Cilioplasm is a cellular compartment for calcium signaling in response to mechanical and chemical stimuli. Cell Mol Life Sci 71(11):2165–2178. doi: 10.1007/s00018-013-1483-1 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Su S, Phua SC, Derose R, Chiba S, Narita K, Kalugin PN, Katada T, Kontani K, Takeda S, Inoue T (2013) Genetically encoded calcium indicator illuminates calcium dynamics in primary cilia. Nat Methods. doi: 10.1038/nmeth.2647 PubMedCentralGoogle Scholar
  28. 28.
    Yuan S, Zhao L, Brueckner M, Sun Z (2015) Intraciliary calcium oscillations initiate vertebrate left-right asymmetry. Curr Biol 25(5):556–567. doi: 10.1016/j.cub.2014.12.051 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    DeCaen PG, Delling M, Vien TN, Clapham DE (2013) Direct recording and molecular identification of the calcium channel of primary cilia. Nature 504(7479):315–318. doi: 10.1038/nature12832 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Caspary T, Larkins CE, Anderson KV (2007) The graded response to Sonic Hedgehog depends on cilia architecture. Dev Cell 12(5):767–778CrossRefPubMedGoogle Scholar
  31. 31.
    Duldulao NA, Lee S, Sun Z (2009) Cilia localization is essential for in vivo functions of the Joubert syndrome protein Arl13b/Scorpion. Development 136(23):4033–4042. doi: 10.1242/dev.036350 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Berbari NF, Johnson AD, Lewis JS, Askwith CC, Mykytyn K (2008) Identification of ciliary localization sequences within the third intracellular loop of G protein-coupled receptors. Mol Biol Cell 19(4):1540–1547. doi: 10.1091/mbc.E07-09-0942 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Chen JK, Taipale J, Cooper MK, Beachy PA (2002) Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev 16(21):2743–2748. doi: 10.1101/gad.1025302 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Corbit KC, Aanstad P, Singla V, Norman AR, Stainier DY, Reiter JF (2005) Vertebrate smoothened functions at the primary cilium. Nature 437(7061):1018–1021. doi: 10.1038/nature04117 CrossRefPubMedGoogle Scholar
  35. 35.
    McGrath J, Somlo S, Makova S, Tian X, Brueckner M (2003) Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell 114(1):61–73CrossRefPubMedGoogle Scholar
  36. 36.
    Malicki J, Avanesov A, Li J, Yuan S, Sun Z (2011) Analysis of cilia structure and function in zebrafish. Methods Cell Biol 101:39–74. doi: 10.1016/B978-0-12-387036-0.00003-7 CrossRefPubMedGoogle Scholar
  37. 37.
    Yuan S, Sun Z (2009) Microinjection of mRNA and morpholino antisense oligonucleotides in zebrafish embryos. J Vis Exp 27:pii:1113. doi: 10.3791/1113 Google Scholar
  38. 38.
    Borovina A, Superina S, Voskas D, Ciruna B (2010) Vangl2 directs the posterior tilting and asymmetric localization of motile primary cilia. Nat Cell Biol 12(4):407–412. doi: 10.1038/ncb2042 CrossRefPubMedGoogle Scholar
  39. 39.
    Boskovski MT, Yuan S, Pedersen NB, Goth CK, Makova S, Clausen H, Brueckner M, Khokha MK (2013) The heterotaxy gene GALNT11 glycosylates Notch to orchestrate cilia type and laterality. Nature 504(7480):456–459. doi: 10.1038/nature12723 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Yuan S, Zhao L, Sun Z (2013) Dissecting the functional interplay between the TOR pathway and the cilium in zebrafish. Methods Enzymol 525:159–189. doi: 10.1016/B978-0-12-397944-5.00009-2 CrossRefPubMedGoogle Scholar
  41. 41.
    Westerfield M (1993) The zebrafish book: a guide for the laboratory use of zebrafish (Brachydanio rerio). M. Westerfield, Eugene, ORGoogle Scholar
  42. 42.
    Austin-Tse C, Halbritter J, Zariwala MA, Gilberti RM, Gee HY, Hellman N, Pathak N, Liu Y, Panizzi JR, Patel-King RS, Tritschler D, Bower R, O'Toole E, Porath JD, Hurd TW, Chaki M, Diaz KA, Kohl S, Lovric S, Hwang DY, Braun DA, Schueler M, Airik R, Otto EA, Leigh MW, Noone PG, Carson JL, Davis SD, Pittman JE, Ferkol TW, Atkinson JJ, Olivier KN, Sagel SD, Dell SD, Rosenfeld M, Milla CE, Loges NT, Omran H, Porter ME, King SM, Knowles MR, Drummond IA, Hildebrandt F (2013) Zebrafish ciliopathy screen plus human mutational analysis identifies C21orf59 and CCDC65 defects as causing primary ciliary dyskinesia. Am J Hum Genet 93(4):672–686. doi: 10.1016/j.ajhg.2013.08.015 CrossRefPubMedCentralGoogle Scholar
  43. 43.
    Essner JJ, Amack JD, Nyholm MK, Harris EB, Yost HJ (2005) Kupffer's vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut. Development 132(6):1247–1260. doi: 10.1242/dev.01663 CrossRefPubMedGoogle Scholar
  44. 44.
    Sun Z, Amsterdam A, Pazour GJ, Cole DG, Miller MS, Hopkins N (2004) A genetic screen in zebrafish identifies cilia genes as a principal cause of cystic kidney. Development 131(16):4085–4093CrossRefGoogle Scholar
  45. 45.
    Kreiling JA, Prabhat, Williams G, Creton R (2007) Analysis of Kupffer’s vesicle in zebrafish embryos using a cave automated virtual environment. Dev Dyn 236(7):1963–1969. doi: 10.1002/dvdy.21191 CrossRefPubMedGoogle Scholar
  46. 46.
    Lopes SS, Lourenco R, Pacheco L, Moreno N, Kreiling J, Saude L (2010) Notch signalling regulates left-right asymmetry through ciliary length control. Development 137(21):3625–3632. doi: 10.1242/dev.054452 CrossRefPubMedGoogle Scholar
  47. 47.
    Perez Koldenkova V, Nagai T (2013) Genetically encoded Ca(2+) indicators: properties and evaluation. Biochim Biophys Acta 1833(7):1787–1797. doi: 10.1016/j.bbamcr.2013.01.011 CrossRefPubMedGoogle Scholar
  48. 48.
    Pusl T, Wu JJ, Zimmerman TL, Zhang L, Ehrlich BE, Berchtold MW, Hoek JB, Karpen SJ, Nathanson MH, Bennett AM (2002) Epidermal growth factor-mediated activation of the ETS domain transcription factor Elk-1 requires nuclear calcium. J Biol Chem 277(30):27517–27527. doi: 10.1074/jbc.M203002200 CrossRefPubMedGoogle Scholar
  49. 49.
    Hashimoto H, Rebagliati M, Ahmad N, Muraoka O, Kurokawa T, Hibi M, Suzuki T (2004) The Cerberus/Dan-family protein Charon is a negative regulator of nodal signaling during left-right patterning in zebrafish. Development 131(8):1741–1753. doi: 10.1242/dev.01070 CrossRefGoogle Scholar
  50. 50.
    Long S, Ahmad N, Rebagliati M (2003) The zebrafish nodal-related gene southpaw is required for visceral and diencephalic left-right asymmetry. Development 130(11):2303–2316CrossRefGoogle Scholar
  51. 51.
    Bisgrove BW, Essner JJ, Yost HJ (1999) Regulation of midline development by antagonism of lefty and nodal signaling. Development 126(14):3253–3262PubMedGoogle Scholar
  52. 52.
    Essner JJ, Branford WW, Zhang J, Yost HJ (2000) Mesendoderm and left-right brain, heart and gut development are differentially regulated by pitx2 isoforms. Development 127(5):1081–1093PubMedGoogle Scholar
  53. 53.
    Chen JN, van Eeden FJ, Warren KS, Chin A, Nusslein-Volhard C, Haffter P, Fishman MC (1997) Left-right pattern of cardiac BMP4 may drive asymmetry of the heart in zebrafish. Development 124(21):4373–4382PubMedGoogle Scholar
  54. 54.
    Thisse C, Thisse B (2008) High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc 3(1):59–69. doi: 10.1038/nprot.2007.514 CrossRefPubMedGoogle Scholar
  55. 55.
    Yuan S, Li J, Diener DR, Choma MA, Rosenbaum JL, Sun Z (2012) Target-of-rapamycin complex 1 (Torc1) signaling modulates cilia size and function through protein synthesis regulation. Proc Natl Acad Sci U S A 109(6):2021–2026. doi: 10.1073/pnas.1112834109 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Ishikawa H, Thompson J, Yates JR 3rd, Marshall WF (2012) Proteomic analysis of mammalian primary cilia. Curr Biol 22(5):414–419. doi: 10.1016/j.cub.2012.01.031 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Tian L, Hires SA, Looger LL (2012) Imaging neuronal activity with genetically encoded calcium indicators. Cold Spring Harb Protoc 2012(6):647–656. doi: 10.1101/pdb.top069609 CrossRefPubMedGoogle Scholar
  58. 58.
    Narita K, Kozuka-Hata H, Nonami Y, Ao-Kondo H, Suzuki T, Nakamura H, Yamakawa K, Oyama M, Inoue T, Takeda S (2012) Proteomic analysis of multiple primary cilia reveals a novel mode of ciliary development in mammals. Biol Open 1(8):815–825. doi: 10.1242/bio.20121081 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Gherman A, Davis EE, Katsanis N (2006) The ciliary proteome database: an integrated community resource for the genetic and functional dissection of cilia. Nat Genet 38(9):961–962. doi: 10.1038/ng0906-961 CrossRefPubMedGoogle Scholar
  60. 60.
    Arnaiz O, Malinowska A, Klotz C, Sperling L, Dadlez M, Koll F, Cohen J (2009) Cildb: a knowledgebase for centrosomes and cilia. Database (Oxford) 2009:22. doi: 10.1093/database/bap022 CrossRefGoogle Scholar
  61. 61.
    Tian L, Hires SA, Mao T, Huber D, Chiappe ME, Chalasani SH, Petreanu L, Akerboom J, McKinney SA, Schreiter ER, Bargmann CI, Jayaraman V, Svoboda K, Looger LL (2009) Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 6(12):875–881. doi: 10.1038/nmeth.1398 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, Schreiter ER, Kerr RA, Orger MB, Jayaraman V, Looger LL, Svoboda K, Kim DS (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499(7458):295–300. doi: 10.1038/nature12354 CrossRefPubMedCentralGoogle Scholar
  63. 63.
    Muto A, Ohkura M, Abe G, Nakai J, Kawakami K (2013) Real-time visualization of neuronal activity during perception. Curr Biol 23(4):307–311. doi: 10.1016/j.cub.2012.12.040 CrossRefGoogle Scholar
  64. 64.
    Ohkura M, Sasaki T, Sadakari J, Gengyo-Ando K, Kagawa-Nagamura Y, Kobayashi C, Ikegaya Y, Nakai J (2012) Genetically encoded green fluorescent Ca2+ indicators with improved detectability for neuronal Ca2+ signals. PLoS One 7(12), e51286. doi: 10.1371/journal.pone.0051286 CrossRefPubMedCentralGoogle Scholar
  65. 65.
    Akerboom J, Carreras Calderon N, Tian L, Wabnig S, Prigge M, Tolo J, Gordus A, Orger MB, Severi KE, Macklin JJ, Patel R, Pulver SR, Wardill TJ, Fischer E, Schuler C, Chen TW, Sarkisyan KS, Marvin JS, Bargmann CI, Kim DS, Kugler S, Lagnado L, Hegemann P, Gottschalk A, Schreiter ER, Looger LL (2013) Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front Mol Neurosci 6:2. doi: 10.3389/fnmol.2013.00002 CrossRefPubMedCentralGoogle Scholar
  66. 66.
    Zhao Y, Araki S, Wu J, Teramoto T, Chang YF, Nakano M, Abdelfattah AS, Fujiwara M, Ishihara T, Nagai T, Campbell RE (2011) An expanded palette of genetically encoded Ca(2)(+) indicators. Science 333(6051):1888–1891. doi: 10.1126/science.1208592 CrossRefPubMedCentralGoogle Scholar
  67. 67.
    Horikawa K, Yamada Y, Matsuda T, Kobayashi K, Hashimoto M, Matsu-ura T, Miyawaki A, Michikawa T, Mikoshiba K, Nagai T (2010) Spontaneous network activity visualized by ultrasensitive Ca(2+) indicators, yellow Cameleon-Nano. Nat Methods 7(9):729–732. doi: 10.1038/nmeth.1488 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of PediatricsYale University School of MedicineNew HavenUSA
  2. 2.Department of GeneticsYale University School of MedicineNew HavenUSA

Personalised recommendations