Advertisement

Cilia pp 97-106 | Cite as

A FRAP-Based Method for Monitoring Molecular Transport in Ciliary Photoreceptor Cells In Vivo

  • Kirsten A. Wunderlich
  • Uwe WolfrumEmail author
Protocol
  • 1.4k Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 1454)

Abstract

The outer segment of rod and cone photoreceptor cells represents a highly modified primary sensory cilium. It renews on a daily basis throughout lifetime and effective vectorial transport to the cilium is essential for the maintenance of the photoreceptor cell function. Defects in molecules of transport modules lead to severe retinal ciliopathies. We have recently established a fluorescence recovery after photobleaching (FRAP)-based method to monitor molecular trafficking in living rodent photoreceptor cells. We irreversibly bleach the fluorescence of tagged molecules (e.g. eGFP-Rhodopsin) in photoreceptor cells of native vibratome sections through the retina by high laser intensity. In the laser scanning microscope, the recovery of the fluorescent signal is monitored over time and the kinetics of movements of molecules can be quantitatively ascertained.

Key words

Ciliary transport Primary sensory cilia Ciliated photoreceptor cells Rhodopsin Intracellular transport 

Notes

Acknowledgments

The present study was supported by the German Research Council (DFG) FOR 2149/WO548-8, EC FP7/2009/241955 (SYSCILIA), the FAUN Foundation, Nurnberg, and the JGU Research Support (Stage 1). We thank Dr. J.H. Wilson, Houston, TX, for kindly providing the hRho-eGFP knock-in mouse line and Dr. Helen May-Simera for critical comments on the manuscript.

References

  1. 1.
    Young RW (1967) The renewal of photoreceptor cell outer segments. JCell Biol 33:61–72CrossRefGoogle Scholar
  2. 2.
    Steinberg RH, Fisher SK, Anderson DH (1980) Disc morphogenesis in vertebrate photoreceptors. JCompNeurol 190:501–518Google Scholar
  3. 3.
    Usukura J, Obata S (1995) Morphogenesis of photoreceptor outer segments in retinal development. Prog Retin Eye Res 15:113–125CrossRefGoogle Scholar
  4. 4.
    Kevany BM, Palczewski K (2010) Phagocytosis of retinal rod and cone photoreceptors. Physiology 25(1):8–15. doi: 10.1152/physiol.00038.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Pearring JN, Salinas RY, Baker SA, Arshavsky VY (2013) Protein sorting, targeting and trafficking in photoreceptor cells. Prog Retin Eye Res 36:24–51. doi: 10.1016/j.preteyeres.2013.03.002 CrossRefPubMedGoogle Scholar
  6. 6.
    Wolfrum U, Schmitt A (2000) Rhodopsin transport in the membrane of the connecting cilium of mammalian photoreceptor cells. Cell Motil Cytoskeleton 46(2):95–107. doi: 10.1002/1097-0169(200006)46:2<95::AID-CM2>3.0.CO;2-Q CrossRefPubMedGoogle Scholar
  7. 7.
    Wang J, Deretic D (2014) Molecular complexes that direct rhodopsin transport to primary cilia. Prog Retin Eye Res 38:1–19. doi: 10.1016/j.preteyeres.2013.08.004 CrossRefPubMedGoogle Scholar
  8. 8.
    Tian G, Ropelewski P, Nemet I, Lee R, Lodowski KH, Imanishi Y (2014) An unconventional secretory pathway mediates the cilia targeting of peripherin/rds. J Neurosci 34(3):992–1006. doi: 10.1523/JNEUROSCI.3437-13.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Trivedi D, Colin E, Louie CM, Williams DS (2012) Live-cell imaging evidence for the ciliary transport of rod photoreceptor opsin by heterotrimeric kinesin-2. J Neurosci 32(31):10587–10593. doi: 10.1523/JNEUROSCI.0015-12.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Reits EA, Neefjes JJ (2001) From fixed to FRAP: measuring protein mobility and activity in living cells. Nat Cell Biol 3(6):E145–147. doi: 10.1038/35078615 CrossRefPubMedGoogle Scholar
  11. 11.
    Chan F, Bradley A, Wensel TG, Wilson JH (2004) Knock-in human rhodopsin-GFP fusions as mouse models for human disease and targets for gene therapy. Proc Natl Acad Sci U S A 101:9109–9114CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Sung CH, Chuang JZ (2010) The cell biology of vision. J Cell Biol 190(6):953–963. doi: 10.1083/jcb.201006020 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute of Zoology, Cell and Matrix BiologyJohannes Gutenberg University of MainzMainzGermany

Personalised recommendations